
TM

definitive,

TM

http://mhprofessional.com/promo/index.php?promocode=Java2014

JDK 8 Will Change the Way You Program
By

Herbert Schildt

In the world of programming, nothing stands still very long. Languages evolve,
execution environments expand, and the art of programming advances. For those of us
who program, it is a fact of life that change is constant. And, it is this process that keeps
the profession of programming alive, exciting, and at times demanding. Thus, it should
come as no surprise that the release of JDK 8 includes new features that will once again
change the way that Java code is written. Moreover, those changes will be both deep and
profound, affecting virtually all types of Java applications. Simply put: JDK 8 will
change the way you program.

As with previous Java releases, JDK 8 contains a large number of new features.
Although all are important, three stand out. They are:

x Lambda expressions

x The stream API in java.util.stream

x Default interface methods

Combined, lambda expressions, the stream API, and default methods fundamentally
expand the scope, power, and range of Java. Let's take a brief look at each.

Lambda Expressions
The single most important new JDK 8 feature is the lambda expression. Java

programmers have been anticipating lambda expressions for some time, and JDK 8
delivers a powerful, yet flexible implementation. Lambda expressions are so important
because they add functional programming features to Java. Their use can simplify and
reduce the amount of source code needed to create certain constructs, such as some types
of anonymous classes. This is particularly helpful when implementing a number of
commonly used event handlers, for example. Lambdas also make it easy to pass what is,
in essence, a piece of executable code as an argument to a method. To support lambda
expressions Java has been expanded by the inclusion of a new operator (the –>) and a
new syntax element. Make no mistake, the impact of the lambda expression will be
significant, affecting both the way you design and implement Java code.

To give you an idea of the benefits that lambda expressions bring, consider the
following ActionEvent handler, which uses the traditional, anonymous class, approach:

myButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
myLabel.setText("Button pressed.");

}
});

1

With JDK 8, this event handler can be written using a lambda expression, as shown here:
myButton.addActionListener(
 (ae) -> myLabel.setText("Button pressed.")
);

As you can see, this is shorter code that is more direct and to the point. Of course,
lambda expressions have many uses beyond simplifying event handlers. They offer a
powerful solution to many programming challenges.

The Stream API
JDK 8 adds many new features to Java's API library. Arguably, the most

important is the new stream API, which is packaged in java.util.stream. In the context
of the stream API, a stream represents a sequence of data. The key aspect of the stream
API is its ability to perform pipeline operations that search, filter, map, or otherwise
manipulate data.

Assume that you have a list that stores employee names, the department in which
they work, their e-mail addresses, and their phone numbers. Using the stream API, you
can efficiently pipeline the operations that search for entries that match some criterion,
such as department name, sort the matching items, and then extract only the e-mail
addresses, for example. Often, you will use lambda expressions to specify the behavior of
these types of operations. Furthermore, in many cases, such actions can be performed in
parallel, thus providing a high level of efficiency, especially when large data sets are
involved. Put simply, the stream API provides a powerful means of handling data in an
efficient, yet easy to use way.

Default Methods
In the past, no method in an interface could include a body. Thus, all methods in

an interface were implicitly abstract. With the release of JDK 8, this situation has
changed dramatically. It is now possible for an interface method to define a default
implementation. This new capability is called the default method.

A primary motivation for the default method was to provide a means by which
interfaces could be expanded without breaking preexisting code. As you know, when a
non-abstract class implements an interface, there must be implementations for all
methods defined by that interface. In the past, if a new method was added to a popular,
widely-used interface, then the addition of that method would break preexisting code,
because no implementation would be found for that new method in preexisting classes.
The default method solves this problem by supplying an implementation that will be used
if no other implementation is explicitly provided. Thus, the addition of a default method
will not cause preexisting code to break. This enables interfaces to be gracefully evolved
over time without negative consequences.

Another motivation for the default method was the desire to specify methods in an
interface that are, essentially, optional, depending on how the interface is used. In the
past, optional methods defined by an interface were still required to be implemented even

 2

though they were unused. Often, this was done by providing an empty implementation.
Today, a default implementation can be provided for an optional method, thus
eliminating the tedium of creating empty, placeholder implementations.

Of Course, There is More
Although lambda expressions, the stream API, and default methods are the

features that have the most profound impact on the character and nature of Java, JDK 8
includes several others. Among these are method references, repeating annotations, and
annotations on type uses. As you would expect, there are also substantial updates and
enhancements to the Java library, including a new date and time API and the functional
interfaces packaged in java.util.function. A functional interface is an interface that
defines one and only one abstract method. Functional interfaces provide support for
lambda expressions and method references. JDK 8 also puts JavaFX front and center.
This powerful GUI framework is something that no Java programmer should ignore.

With the release of JDK 8, the world of Java programming is once again
changing. Many of the techniques that programmers have relied on in the past are now
being replaced by better, more powerful constructs. Programmers who fail to adopt the
new strategies will soon find themselves left behind. Frankly, in the competitive world of
programming, no Java programmer can afford to be left behind.

 3

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

© 2014 McGraw-Hill Education

6
CHAPTER

 109

Introducing Classes

The class is at the core of Java. It is the logical construct upon which the entire Java language
is built because it defines the shape and nature of an object. As such, the class forms the
basis for object-oriented programming in Java. Any concept you wish to implement in a Java
program must be encapsulated within a class.

Because the class is so fundamental to Java, this and the next few chapters will be devoted
to it. Here, you will be introduced to the basic elements of a class and learn how a class can be
used to create objects. You will also learn about methods, constructors, and the this keyword.

Class Fundamentals
Classes have been used since the beginning of this book. However, until now, only the most
rudimentary form of a class has been shown. The classes created in the preceding chapters
primarily exist simply to encapsulate the main() method, which has been used to demonstrate
the basics of the Java syntax. As you will see, classes are substantially more powerful than the
limited ones presented so far.

Perhaps the most important thing to understand about a class is that it defines a new
data type. Once defined, this new type can be used to create objects of that type. Thus, a
class is a template for an object, and an object is an instance of a class. Because an object is an
instance of a class, you will often see the two words object and instance used interchangeably.

The General Form of a Class
When you define a class, you declare its exact form and nature. You do this by specifying
the data that it contains and the code that operates on that data. While very simple classes
may contain only code or only data, most real-world classes contain both. As you will see, a
class’ code defines the interface to its data.

A class is declared by use of the class keyword. The classes that have been used up to
this point are actually very limited examples of its complete form. Classes can (and usually
do) get much more complex. A simplified general form of a class definition is shown here:

class classname {
 type instance-variable1;

06-ch06.indd 109 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

110 PART I The Java Language

© 2014 McGraw-Hill Education

 type instance-variable2;
 // ...
 type instance-variableN;

 type methodname1(parameter-list) {
 // body of method
 }
 type methodname2(parameter-list) {
 // body of method
 }
 // ...
 type methodnameN(parameter-list) {
 // body of method
 }
}

The data, or variables, defined within a class are called instance variables. The code is
contained within methods. Collectively, the methods and variables defined within a class
are called members of the class. In most classes, the instance variables are acted upon and
accessed by the methods defined for that class. Thus, as a general rule, it is the methods
that determine how a class’ data can be used.

Variables defined within a class are called instance variables because each instance of
the class (that is, each object of the class) contains its own copy of these variables. Thus, the
data for one object is separate and unique from the data for another. We will come back to
this point shortly, but it is an important concept to learn early.

All methods have the same general form as main(), which we have been using thus far.
However, most methods will not be specified as static or public. Notice that the general
form of a class does not specify a main() method. Java classes do not need to have a main()
method. You only specify one if that class is the starting point for your program. Further,
some kinds of Java applications, such as applets, don’t require a main() method at all.

A Simple Class
Let’s begin our study of the class with a simple example. Here is a class called Box that
defines three instance variables: width, height, and depth. Currently, Box does not contain
any methods (but some will be added soon).

class Box {
 double width;
 double height;
 double depth;
}

As stated, a class defines a new type of data. In this case, the new data type is called Box. You
will use this name to declare objects of type Box. It is important to remember that a class
declaration only creates a template; it does not create an actual object. Thus, the preceding
code does not cause any objects of type Box to come into existence.

06-ch06.indd 110 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 111

Pa
rt

 I

© 2014 McGraw-Hill Education

To actually create a Box object, you will use a statement like the following:

Box mybox = new Box(); // create a Box object called mybox

After this statement executes, mybox will be an instance of Box. Thus, it will have “physical”
reality. For the moment, don’t worry about the details of this statement.

As mentioned earlier, each time you create an instance of a class, you are creating an
object that contains its own copy of each instance variable defined by the class. Thus, every
Box object will contain its own copies of the instance variables width, height, and depth. To
access these variables, you will use the dot (.) operator. The dot operator links the name of
the object with the name of an instance variable. For example, to assign the width variable
of mybox the value 100, you would use the following statement:

mybox.width = 100;

This statement tells the compiler to assign the copy of width that is contained within the
mybox object the value of 100. In general, you use the dot operator to access both the
instance variables and the methods within an object. One other point: Although commonly
referred to as the dot operator, the formal specification for Java categorizes the . as a separator.
However, since the use of the term “dot operator” is widespread, it is used in this book.

Here is a complete program that uses the Box class:

/* A program that uses the Box class.

 Call this file BoxDemo.java
*/
class Box {
 double width;
 double height;
 double depth;
}

// This class declares an object of type Box.
class BoxDemo {
 public static void main(String args[]) {
 Box mybox = new Box();
 double vol;

 // assign values to mybox's instance variables
 mybox.width = 10;
 mybox.height = 20;
 mybox.depth = 15;

 // compute volume of box
 vol = mybox.width * mybox.height * mybox.depth;

 System.out.println("Volume is " + vol);
 }
}

You should call the file that contains this program BoxDemo.java, because the main()
method is in the class called BoxDemo, not the class called Box. When you compile this

06-ch06.indd 111 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

112 PART I The Java Language

© 2014 McGraw-Hill Education

program, you will find that two .class files have been created, one for Box and one for
BoxDemo. The Java compiler automatically puts each class into its own .class file. It is not
necessary for both the Box and the BoxDemo class to actually be in the same source file.
You could put each class in its own file, called Box.java and BoxDemo.java, respectively.

To run this program, you must execute BoxDemo.class. When you do, you will see the
following output:

 Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This means
that if you have two Box objects, each has its own copy of depth, width, and height. It is
important to understand that changes to the instance variables of one object have no
effect on the instance variables of another. For example, the following program declares
two Box objects:

// This program declares two Box objects.

class Box {
 double width;
 double height;
 double depth;
}

class BoxDemo2 {
 public static void main(String args[]) {
 Box mybox1 = new Box();
 Box mybox2 = new Box();
 double vol;

 // assign values to mybox1's instance variables
 mybox1.width = 10;
 mybox1.height = 20;
 mybox1.depth = 15;

 /* assign different values to mybox2's
 instance variables */
 mybox2.width = 3;
 mybox2.height = 6;
 mybox2.depth = 9;

 // compute volume of first box
 vol = mybox1.width * mybox1.height * mybox1.depth;
 System.out.println("Volume is " + vol);

 // compute volume of second box
 vol = mybox2.width * mybox2.height * mybox2.depth;
 System.out.println("Volume is " + vol);
 }
}

06-ch06.indd 112 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 113

Pa
rt

 I

© 2014 McGraw-Hill Education

The output produced by this program is shown here:

 Volume is 3000.0
 Volume is 162.0

As you can see, mybox1’s data is completely separate from the data contained in mybox2.

Declaring Objects
As just explained, when you create a class, you are creating a new data type. You can use this
type to declare objects of that type. However, obtaining objects of a class is a two-step process.
First, you must declare a variable of the class type. This variable does not define an object.
Instead, it is simply a variable that can refer to an object. Second, you must acquire an actual,
physical copy of the object and assign it to that variable. You can do this using the new
operator. The new operator dynamically allocates (that is, allocates at run time) memory
for an object and returns a reference to it. This reference is, more or less, the address in
memory of the object allocated by new. This reference is then stored in the variable. Thus,
in Java, all class objects must be dynamically allocated. Let’s look at the details of this
procedure.

In the preceding sample programs, a line similar to the following is used to declare an
object of type Box:

Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to show
each step more clearly:

Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. At this point, mybox
does not yet refer to an actual object. The next line allocates an object and assigns a
reference to it to mybox. After the second line executes, you can use mybox as if it were a
Box object. But in reality, mybox simply holds, in essence, the memory address of the actual
Box object. The effect of these two lines of code is depicted in Figure 6-1.

NOTE Those readers familiar with C/C++ have probably noticed that object references appear to be
similar to pointers. This suspicion is, essentially, correct. An object reference is similar to a memory
pointer. The main difference—and the key to Java’s safety—is that you cannot manipulate references
as you can actual pointers. Thus, you cannot cause an object reference to point to an arbitrary
memory location or manipulate it like an integer.

A Closer Look at new
As just explained, the new operator dynamically allocates memory for an object. It has this
general form:

class-var = new classname ();

06-ch06.indd 113 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

114 PART I The Java Language

© 2014 McGraw-Hill Education

Here, class-var is a variable of the class type being created. The classname is the name of
the class that is being instantiated. The class name followed by parentheses specifies the
constructor for the class. A constructor defines what occurs when an object of a class is
created. Constructors are an important part of all classes and have many significant
attributes. Most real-world classes explicitly define their own constructors within their
class definition. However, if no explicit constructor is specified, then Java will automatically
supply a default constructor. This is the case with Box. For now, we will use the default
constructor. Soon, you will see how to define your own constructors.

At this point, you might be wondering why you do not need to use new for such things
as integers or characters. The answer is that Java’s primitive types are not implemented as
objects. Rather, they are implemented as “normal” variables. This is done in the interest of
efficiency. As you will see, objects have many features and attributes that require Java to
treat them differently than it treats the primitive types. By not applying the same overhead
to the primitive types that applies to objects, Java can implement the primitive types more
efficiently. Later, you will see object versions of the primitive types that are available for your
use in those situations in which complete objects of these types are needed.

It is important to understand that new allocates memory for an object during run time.
The advantage of this approach is that your program can create as many or as few objects as
it needs during the execution of your program. However, since memory is finite, it is possible
that new will not be able to allocate memory for an object because insufficient memory
exists. If this happens, a run-time exception will occur. (You will learn how to handle
exceptions in Chapter 10.) For the sample programs in this book, you won’t need to worry
about running out of memory, but you will need to consider this possibility in real-world
programs that you write.

Let’s once again review the distinction between a class and an object. A class creates a
new data type that can be used to create objects. That is, a class creates a logical framework
that defines the relationship between its members. When you declare an object of a class,
you are creating an instance of that class. Thus, a class is a logical construct. An object has
physical reality. (That is, an object occupies space in memory.) It is important to keep this
distinction clearly in mind.

Figure 6-1 Declaring an object of type Box

06-ch06.indd 114 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 115

Pa
rt

 I

© 2014 McGraw-Hill Education

Assigning Object Reference Variables
Object reference variables act differently than you might expect when an assignment takes
place. For example, what do you think the following fragment does?

Box b1 = new Box();
Box b2 = b1;

You might think that b2 is being assigned a reference to a copy of the object referred to by
b1. That is, you might think that b1 and b2 refer to separate and distinct objects. However,
this would be wrong. Instead, after this fragment executes, b1 and b2 will both refer to the
same object. The assignment of b1 to b2 did not allocate any memory or copy any part of
the original object. It simply makes b2 refer to the same object as does b1. Thus, any
changes made to the object through b2 will affect the object to which b1 is referring, since
they are the same object.

This situation is depicted here:

Although b1 and b2 both refer to the same object, they are not linked in any other way.
For example, a subsequent assignment to b1 will simply unhook b1 from the original object
without affecting the object or affecting b2. For example:

Box b1 = new Box();
Box b2 = b1;
// ...
b1 = null;

Here, b1 has been set to null, but b2 still points to the original object.

REMEMBER When you assign one object reference variable to another object reference variable, you are
not creating a copy of the object, you are only making a copy of the reference.

Introducing Methods
As mentioned at the beginning of this chapter, classes usually consist of two things: instance
variables and methods. The topic of methods is a large one because Java gives them so much
power and flexibility. In fact, much of the next chapter is devoted to methods. However,
there are some fundamentals that you need to learn now so that you can begin to add
methods to your classes.

06-ch06.indd 115 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

116 PART I The Java Language

© 2014 McGraw-Hill Education

This is the general form of a method:

type name(parameter-list) {
 // body of method
}

Here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return type
must be void. The name of the method is specified by name. This can be any legal identifier
other than those already used by other items within the current scope. The parameter-list is a
sequence of type and identifier pairs separated by commas. Parameters are essentially
variables that receive the value of the arguments passed to the method when it is called.
If the method has no parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine
using the following form of the return statement:

return value;

Here, value is the value returned.
In the next few sections, you will see how to create various types of methods, including

those that take parameters and those that return values.

Adding a Method to the Box Class
Although it is perfectly fine to create a class that contains only data, it rarely happens. Most
of the time, you will use methods to access the instance variables defined by the class. In
fact, methods define the interface to most classes. This allows the class implementor to
hide the specific layout of internal data structures behind cleaner method abstractions. In
addition to defining methods that provide access to data, you can also define methods that
are used internally by the class itself.

Let’s begin by adding a method to the Box class. It may have occurred to you while
looking at the preceding programs that the computation of a box’s volume was something
that was best handled by the Box class rather than the BoxDemo class. After all, since the
volume of a box is dependent upon the size of the box, it makes sense to have the Box class
compute it. To do this, you must add a method to Box, as shown here:

// This program includes a method inside the box class.

class Box {
 double width;
 double height;
 double depth;

 // display volume of a box
 void volume() {
 System.out.print("Volume is ");
 System.out.println(width * height * depth);
 }
}

class BoxDemo3 {
 public static void main(String args[]) {

06-ch06.indd 116 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 117

Pa
rt

 I

© 2014 McGraw-Hill Education

 Box mybox1 = new Box();
 Box mybox2 = new Box();

 // assign values to mybox1's instance variables
 mybox1.width = 10;
 mybox1.height = 20;
 mybox1.depth = 15;

 /* assign different values to mybox2's
 instance variables */
 mybox2.width = 3;
 mybox2.height = 6;
 mybox2.depth = 9;

 // display volume of first box
 mybox1.volume();

 // display volume of second box
 mybox2.volume();
 }
}

This program generates the following output, which is the same as the previous version.

 Volume is 3000.0
 Volume is 162.0

Look closely at the following two lines of code:

mybox1.volume();
mybox2.volume();

The first line here invokes the volume() method on mybox1. That is, it calls volume()
relative to the mybox1 object, using the object’s name followed by the dot operator. Thus,
the call to mybox1.volume() displays the volume of the box defined by mybox1, and the
call to mybox2.volume() displays the volume of the box defined by mybox2. Each time
volume() is invoked, it displays the volume for the specified box.

If you are unfamiliar with the concept of calling a method, the following discussion will
help clear things up. When mybox1.volume() is executed, the Java run-time system transfers
control to the code defined inside volume(). After the statements inside volume() have
executed, control is returned to the calling routine, and execution resumes with the line of
code following the call. In the most general sense, a method is Java’s way of implementing
subroutines.

There is something very important to notice inside the volume() method: the instance
variables width, height, and depth are referred to directly, without preceding them with an
object name or the dot operator. When a method uses an instance variable that is defined
by its class, it does so directly, without explicit reference to an object and without use of the
dot operator. This is easy to understand if you think about it. A method is always invoked
relative to some object of its class. Once this invocation has occurred, the object is known.
Thus, within a method, there is no need to specify the object a second time. This means
that width, height, and depth inside volume() implicitly refer to the copies of those
variables found in the object that invokes volume().

06-ch06.indd 117 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

118 PART I The Java Language

© 2014 McGraw-Hill Education

Let’s review: When an instance variable is accessed by code that is not part of the class
in which that instance variable is defined, it must be done through an object, by use of the
dot operator. However, when an instance variable is accessed by code that is part of the
same class as the instance variable, that variable can be referred to directly. The same thing
applies to methods.

Returning a Value
While the implementation of volume() does move the computation of a box’s volume
inside the Box class where it belongs, it is not the best way to do it. For example, what if
another part of your program wanted to know the volume of a box, but not display its
value? A better way to implement volume() is to have it compute the volume of the box
and return the result to the caller. The following example, an improved version of the
preceding program, does just that:

// Now, volume() returns the volume of a box.

class Box {
 double width;
 double height;
 double depth;

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

class BoxDemo4 {
 public static void main(String args[]) {
 Box mybox1 = new Box();
 Box mybox2 = new Box();
 double vol;

 // assign values to mybox1's instance variables
 mybox1.width = 10;
 mybox1.height = 20;
 mybox1.depth = 15;

 /* assign different values to mybox2's
 instance variables */
 mybox2.width = 3;
 mybox2.height = 6;
 mybox2.depth = 9;

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume is " + vol);
 }
}

06-ch06.indd 118 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 119

Pa
rt

 I

© 2014 McGraw-Hill Education

As you can see, when volume() is called, it is put on the right side of an assignment
statement. On the left is a variable, in this case vol, that will receive the value returned by
volume(). Thus, after

vol = mybox1.volume();

executes, the value of mybox1.volume() is 3,000 and this value then is stored in vol.
There are two important things to understand about returning values:

The type of data returned by a method must be compatible with the return type
specified by the method. For example, if the return type of some method is
boolean, you could not return an integer.

The variable receiving the value returned by a method (such as vol, in this case)
must also be compatible with the return type specified for the method.

One more point: The preceding program can be written a bit more efficiently because
there is actually no need for the vol variable. The call to volume() could have been used in
the println() statement directly, as shown here:

System.out.println("Volume is" + mybox1.volume());

In this case, when println() is executed, mybox1.volume() will be called automatically and
its value will be passed to println().

Adding a Method That Takes Parameters
While some methods don’t need parameters, most do. Parameters allow a method to be
generalized. That is, a parameterized method can operate on a variety of data and/or be
used in a number of slightly different situations. To illustrate this point, let’s use a very
simple example. Here is a method that returns the square of the number 10:

int square()
{
 return 10 * 10;
}

While this method does, indeed, return the value of 10 squared, its use is very limited.
However, if you modify the method so that it takes a parameter, as shown next, then you
can make square() much more useful.

int square(int i)
{
 return i * i;
}

Now, square() will return the square of whatever value it is called with. That is, square() is
now a general-purpose method that can compute the square of any integer value, rather
than just 10.

Here is an example:

int x, y;
x = square(5); // x equals 25
x = square(9); // x equals 81

06-ch06.indd 119 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

120 PART I The Java Language

© 2014 McGraw-Hill Education

y = 2;
x = square(y); // x equals 4

In the first call to square(), the value 5 will be passed into parameter i. In the second call, i
will receive the value 9. The third invocation passes the value of y, which is 2 in this example.
As these examples show, square() is able to return the square of whatever data it is passed.

It is important to keep the two terms parameter and argument straight. A parameter is a
variable defined by a method that receives a value when the method is called. For example,
in square(), i is a parameter. An argument is a value that is passed to a method when it is
invoked. For example, square(100) passes 100 as an argument. Inside square(), the
parameter i receives that value.

You can use a parameterized method to improve the Box class. In the preceding
examples, the dimensions of each box had to be set separately by use of a sequence of
statements, such as:

mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

While this code works, it is troubling for two reasons. First, it is clumsy and error prone.
For example, it would be easy to forget to set a dimension. Second, in well-designed Java
programs, instance variables should be accessed only through methods defined by their
class. In the future, you can change the behavior of a method, but you can’t change the
behavior of an exposed instance variable.

Thus, a better approach to setting the dimensions of a box is to create a method that
takes the dimensions of a box in its parameters and sets each instance variable
appropriately. This concept is implemented by the following program:

// This program uses a parameterized method.

class Box {
 double width;
 double height;
 double depth;

 // compute and return volume
 double volume() {
 return width * height * depth;
 }

 // sets dimensions of box
 void setDim(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }
}

class BoxDemo5 {

06-ch06.indd 120 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 121

Pa
rt

 I

© 2014 McGraw-Hill Education

 public static void main(String args[]) {
 Box mybox1 = new Box();
 Box mybox2 = new Box();
 double vol;

 // initialize each box
 mybox1.setDim(10, 20, 15);
 mybox2.setDim(3, 6, 9);

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume is " + vol);
 }
}

As you can see, the setDim() method is used to set the dimensions of each box. For
example, when

mybox1.setDim(10, 20, 15);

is executed, 10 is copied into parameter w, 20 is copied into h, and 15 is copied into d.
Inside setDim() the values of w, h, and d are then assigned to width, height, and depth,
respectively.

For many readers, the concepts presented in the preceding sections will be familiar.
However, if such things as method calls, arguments, and parameters are new to you, then
you might want to take some time to experiment before moving on. The concepts of the
method invocation, parameters, and return values are fundamental to Java programming.

Constructors
It can be tedious to initialize all of the variables in a class each time an instance is created.
Even when you add convenience functions like setDim(), it would be simpler and more
concise to have all of the setup done at the time the object is first created. Because the
requirement for initialization is so common, Java allows objects to initialize themselves
when they are created. This automatic initialization is performed through the use of a
constructor.

A constructor initializes an object immediately upon creation. It has the same name as
the class in which it resides and is syntactically similar to a method. Once defined, the
constructor is automatically called when the object is created, before the new operator
completes. Constructors look a little strange because they have no return type, not even
void. This is because the implicit return type of a class’ constructor is the class type itself.
It is the constructor’s job to initialize the internal state of an object so that the code
creating an instance will have a fully initialized, usable object immediately.

You can rework the Box example so that the dimensions of a box are automatically
initialized when an object is constructed. To do so, replace setDim() with a constructor.

06-ch06.indd 121 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

122 PART I The Java Language

© 2014 McGraw-Hill Education

Let’s begin by defining a simple constructor that simply sets the dimensions of each box to
the same values. This version is shown here:

/* Here, Box uses a constructor to initialize the
 dimensions of a box.
*/
class Box {
 double width;
 double height;
 double depth;

 // This is the constructor for Box.
 Box() {
 System.out.println("Constructing Box");
 width = 10;
 height = 10;
 depth = 10;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

class BoxDemo6 {
 public static void main(String args[]) {
 // declare, allocate, and initialize Box objects
 Box mybox1 = new Box();
 Box mybox2 = new Box();

 double vol;

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume is " + vol);
 }
}

When this program is run, it generates the following results:

 Constructing Box
 Constructing Box
 Volume is 1000.0
 Volume is 1000.0

As you can see, both mybox1 and mybox2 were initialized by the Box() constructor
when they were created. Since the constructor gives all boxes the same dimensions, 10 by
10 by 10, both mybox1 and mybox2 will have the same volume. The println() statement

06-ch06.indd 122 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 123

Pa
rt

 I

© 2014 McGraw-Hill Education

inside Box() is for the sake of illustration only. Most constructors will not display anything.
They will simply initialize an object.

Before moving on, let’s reexamine the new operator. As you know, when you allocate an
object, you use the following general form:

class-var = new classname ();

Now you can understand why the parentheses are needed after the class name. What is
actually happening is that the constructor for the class is being called. Thus, in the line

Box mybox1 = new Box();

new Box() is calling the Box() constructor. When you do not explicitly define a constructor
for a class, then Java creates a default constructor for the class. This is why the preceding
line of code worked in earlier versions of Box that did not define a constructor. The default
constructor automatically initializes all instance variables to their default values, which are
zero, null, and false, for numeric types, reference types, and boolean, respectively. The
default constructor is often sufficient for simple classes, but it usually won’t do for more
sophisticated ones. Once you define your own constructor, the default constructor is no
longer used.

Parameterized Constructors
While the Box() constructor in the preceding example does initialize a Box object, it is not
very useful—all boxes have the same dimensions. What is needed is a way to construct Box
objects of various dimensions. The easy solution is to add parameters to the constructor. As
you can probably guess, this makes it much more useful. For example, the following version
of Box defines a parameterized constructor that sets the dimensions of a box as specified by
those parameters. Pay special attention to how Box objects are created.

/* Here, Box uses a parameterized constructor to
 initialize the dimensions of a box.
*/
class Box {
 double width;
 double height;
 double depth;

 // This is the constructor for Box.
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

06-ch06.indd 123 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

124 PART I The Java Language

© 2014 McGraw-Hill Education

class BoxDemo7 {
 public static void main(String args[]) {
 // declare, allocate, and initialize Box objects
 Box mybox1 = new Box(10, 20, 15);
 Box mybox2 = new Box(3, 6, 9);

 double vol;

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume is " + vol);
 }
}

The output from this program is shown here:

 Volume is 3000.0
 Volume is 162.0

As you can see, each object is initialized as specified in the parameters to its constructor.
For example, in the following line,

Box mybox1 = new Box(10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the object.
Thus, mybox1’s copy of width, height, and depth will contain the values 10, 20, and 15,
respectively.

The this Keyword
Sometimes a method will need to refer to the object that invoked it. To allow this, Java
defines the this keyword. this can be used inside any method to refer to the current object.
That is, this is always a reference to the object on which the method was invoked. You can
use this anywhere a reference to an object of the current class’ type is permitted.

To better understand what this refers to, consider the following version of Box():

// A redundant use of this.
Box(double w, double h, double d) {
 this.width = w;
 this.height = h;
 this.depth = d;
}

This version of Box() operates exactly like the earlier version. The use of this is redundant,
but perfectly correct. Inside Box(), this will always refer to the invoking object. While it is

06-ch06.indd 124 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 125

Pa
rt

 I

© 2014 McGraw-Hill Education

redundant in this case, this is useful in other contexts, one of which is explained in the next
section.

Instance Variable Hiding
As you know, it is illegal in Java to declare two local variables with the same name inside the
same or enclosing scopes. Interestingly, you can have local variables, including formal
parameters to methods, which overlap with the names of the class’ instance variables. However,
when a local variable has the same name as an instance variable, the local variable hides the
instance variable. This is why width, height, and depth were not used as the names of the
parameters to the Box() constructor inside the Box class. If they had been, then width, for
example, would have referred to the formal parameter, hiding the instance variable width.
While it is usually easier to simply use different names, there is another way around this
situation. Because this lets you refer directly to the object, you can use it to resolve any
namespace collisions that might occur between instance variables and local variables. For
example, here is another version of Box(), which uses width, height, and depth for parameter
names and then uses this to access the instance variables by the same name:

// Use this to resolve name-space collisions.
Box(double width, double height, double depth) {
 this.width = width;
 this.height = height;
 this.depth = depth;
}

A word of caution: The use of this in such a context can sometimes be confusing, and
some programmers are careful not to use local variables and formal parameter names that
hide instance variables. Of course, other programmers believe the contrary—that it is a
good convention to use the same names for clarity, and use this to overcome the instance
variable hiding. It is a matter of taste which approach you adopt.

Garbage Collection
Since objects are dynamically allocated by using the new operator, you might be wondering
how such objects are destroyed and their memory released for later reallocation. In some
languages, such as C++, dynamically allocated objects must be manually released by use of a
delete operator. Java takes a different approach; it handles deallocation for you automatically.
The technique that accomplishes this is called garbage collection. It works like this: when no
references to an object exist, that object is assumed to be no longer needed, and the memory
occupied by the object can be reclaimed. There is no explicit need to destroy objects as in
C++. Garbage collection only occurs sporadically (if at all) during the execution of your
program. It will not occur simply because one or more objects exist that are no longer
used. Furthermore, different Java run-time implementations will take varying approaches to
garbage collection, but for the most part, you should not have to think about it while writing
your programs.

06-ch06.indd 125 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

126 PART I The Java Language

© 2014 McGraw-Hill Education

The finalize() Method
Sometimes an object will need to perform some action when it is destroyed. For example,
if an object is holding some non-Java resource such as a file handle or character font, then
you might want to make sure these resources are freed before an object is destroyed. To
handle such situations, Java provides a mechanism called finalization. By using finalization,
you can define specific actions that will occur when an object is just about to be reclaimed
by the garbage collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run time
calls that method whenever it is about to recycle an object of that class. Inside the finalize()
method, you will specify those actions that must be performed before an object is destroyed.
The garbage collector runs periodically, checking for objects that are no longer referenced
by any running state or indirectly through other referenced objects. Right before an asset is
freed, the Java run time calls the finalize() method on the object.

The finalize() method has this general form:

protected void finalize()
{
// finalization code here
}

Here, the keyword protected is a specifier that limits access to finalize(). This and the other
access modifiers are explained in Chapter 7.

It is important to understand that finalize() is only called just prior to garbage collection.
It is not called when an object goes out-of-scope, for example. This means that you cannot
know when—or even if—finalize() will be executed. Therefore, your program should
provide other means of releasing system resources, etc., used by the object. It must not
rely on finalize() for normal program operation.

NOTE If you are familiar with C++, then you know that C++ allows you to define a destructor for a class,
which is called when an object goes out-of-scope. Java does not support this idea or provide for
destructors. The finalize() method only approximates the function of a destructor. As you get more
experienced with Java, you will see that the need for destructor functions is minimal because of
Java’s garbage collection subsystem.

A Stack Class
While the Box class is useful to illustrate the essential elements of a class, it is of little
practical value. To show the real power of classes, this chapter will conclude with a more
sophisticated example. As you recall from the discussion of object-oriented programming
(OOP) presented in Chapter 2, one of OOP’s most important benefits is the encapsulation
of data and the code that manipulates that data. As you have seen, the class is the mechanism
by which encapsulation is achieved in Java. By creating a class, you are creating a new data
type that defines both the nature of the data being manipulated and the routines used to
manipulate it. Further, the methods define a consistent and controlled interface to the
class’ data. Thus, you can use the class through its methods without having to worry about
the details of its implementation or how the data is actually managed within the class. In a
sense, a class is like a “data engine.” No knowledge of what goes on inside the engine is
required to use the engine through its controls. In fact, since the details are hidden, its

06-ch06.indd 126 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 127

Pa
rt

 I

© 2014 McGraw-Hill Education

inner workings can be changed as needed. As long as your code uses the class through
its methods, internal details can change without causing side effects outside the class.

To see a practical application of the preceding discussion, let’s develop one of the
archetypal examples of encapsulation: the stack. A stack stores data using first-in, last-out
ordering. That is, a stack is like a stack of plates on a table—the first plate put down on the
table is the last plate to be used. Stacks are controlled through two operations traditionally
called push and pop. To put an item on top of the stack, you will use push. To take an item
off the stack, you will use pop. As you will see, it is easy to encapsulate the entire stack
mechanism.

Here is a class called Stack that implements a stack for up to ten integers:

// This class defines an integer stack that can hold 10 values
class Stack {
 int stck[] = new int[10];
 int tos;

 // Initialize top-of-stack
 Stack() {
 tos = -1;
 }

 // Push an item onto the stack
 void push(int item) {
 if(tos==9)
 System.out.println("Stack is full.");
 else
 stck[++tos] = item;
 }

 // Pop an item from the stack
 int pop() {
 if(tos < 0) {
 System.out.println("Stack underflow.");
 return 0;
 }
 else
 return stck[tos--];
 }
}

As you can see, the Stack class defines two data items and three methods. The stack of
integers is held by the array stck. This array is indexed by the variable tos, which always
contains the index of the top of the stack. The Stack() constructor initializes tos to –1,
which indicates an empty stack. The method push() puts an item on the stack. To retrieve
an item, call pop(). Since access to the stack is through push() and pop(), the fact that the
stack is held in an array is actually not relevant to using the stack. For example, the stack
could be held in a more complicated data structure, such as a linked list, yet the interface
defined by push() and pop() would remain the same.

The class TestStack, shown here, demonstrates the Stack class. It creates two integer
stacks, pushes some values onto each, and then pops them off.

06-ch06.indd 127 11/03/14 2:17 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

128 PART I The Java Language

© 2014 McGraw-Hill Education

class TestStack {
 public static void main(String args[]) {
 Stack mystack1 = new Stack();
 Stack mystack2 = new Stack();

 // push some numbers onto the stack
 for(int i=0; i<10; i++) mystack1.push(i);
 for(int i=10; i<20; i++) mystack2.push(i);

 // pop those numbers off the stack
 System.out.println("Stack in mystack1:");
 for(int i=0; i<10; i++)
 System.out.println(mystack1.pop());

 System.out.println("Stack in mystack2:");
 for(int i=0; i<10; i++)
 System.out.println(mystack2.pop());
 }
}

This program generates the following output:

 Stack in mystack1:
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0
 Stack in mystack2:
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10

As you can see, the contents of each stack are separate.
One last point about the Stack class. As it is currently implemented, it is possible for the

array that holds the stack, stck, to be altered by code outside of the Stack class. This leaves
Stack open to misuse or mischief. In the next chapter, you will see how to remedy this
situation.

06-ch06.indd 128 11/03/14 2:17 PM

© 2014 McGraw-Hill Education

15
CHAPTER

 381

Lambda Expressions

During Java’s ongoing development and evolution, many features have been added since its
original 1.0 release. However, two stand out because they have profoundly reshaped the
language, fundamentally changing the way that code is written. The first was the addition of
generics, added by JDK 5. (See Chapter 14.) The second is the lambda expression, which is
the subject of this chapter.

Added by JDK 8, lambda expressions (and their related features) significantly enhance
Java because of two primary reasons. First, they add new syntax elements that increase the
expressive power of the language. In the process, they streamline the way that certain common
constructs are implemented. Second, the addition of lambda expressions resulted in new
capabilities being incorporated into the API library. Among these new capabilities are the
ability to more easily take advantage of the parallel processing capabilities of multi-core
environments, especially as it relates to the handling of for-each style operations, and the
new stream API, which supports pipeline operations on data. The addition of lambda
expressions also provided the catalyst for other new Java features, including the default
method (described in Chapter 9), which lets you define default behavior for an interface
method, and the method reference (described here), which lets you refer to a method
without executing it.

Beyond the benefits that lambda expressions bring to the language, there is another
reason why they constitute an important addition to Java. Over the past few years, lambda
expressions have become a major focus of computer language design. For example, they
have been added to languages such as C# and C++. Their inclusion in JDK 8 helps Java
remain the vibrant, innovative language that programmers have come to expect.

In the final analysis, in much the same way that generics reshaped Java several years
ago, lambda expressions are reshaping Java today. Simply put, lambda expressions will
impact virtually all Java programmers. They truly are that important.

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

382 PART I The Java Language

© 2014 McGraw-Hill Education

Introducing Lambda Expressions
Key to understanding Java’s implementation of lambda expressions are two constructs. The
first is the lambda expression, itself. The second is the functional interface. Let’s begin with
a simple definition of each.

A lambda expression is, essentially, an anonymous (that is, unnamed) method. However,
this method is not executed on its own. Instead, it is used to implement a method defined
by a functional interface. Thus, a lambda expression results in a form of anonymous class.
Lambda expressions are also commonly referred to as closures.

A functional interface is an interface that contains one and only one abstract method.
Normally, this method specifies the intended purpose of the interface. Thus, a functional
interface typically represents a single action. For example, the standard interface Runnable is
a functional interface because it defines only one method: run(). Therefore, run() defines
the action of Runnable. Furthermore, a functional interface defines the target type of a lambda
expression. Here is a key point: a lambda expression can be used only in a context in which
its target type is specified. One other thing: a functional interface is sometimes referred to as
a SAM type, where SAM stands for Single Abstract Method.

NOTE A functional interface may specify any public method defined by Object, such as equals(),
without affecting its “functional interface” status. The public Object methods are considered implicit
members of a functional interface because they are automatically implemented by an instance of a
functional interface.

Let’s now look more closely at both lambda expressions and functional interfaces.

Lambda Expression Fundamentals
The lambda expression introduces a new syntax element and operator into the Java language.
The new operator, sometimes referred to as the lambda operator or the arrow operator, is −>.
It divides a lambda expression into two parts. The left side specifies any parameters required
by the lambda expression. (If no parameters are needed, an empty parameter list is used.)
On the right side is the lambda body, which specifies the actions of the lambda expression.
The −> can be verbalized as “becomes” or “goes to.”

Java defines two types of lambda bodies. One consists of a single expression, and the
other type consists of a block of code. We will begin with lambdas that define a single
expression. Lambdas with block bodies are discussed later in this chapter.

At this point, it will be helpful to look a few examples of lambda expressions before
continuing. Let’s begin with what is probably the simplest type of lambda expression you
can write. It evaluates to a constant value and is shown here:

() -> 123.45

This lambda expression takes no parameters, thus the parameter list is empty. It returns the
constant value 123.45. Therefore, it is similar to the following method:

double myMeth() { return 123.45; }

15-ch15.indd 382 11/03/14 2:16 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 383

Pa
rt

 I

© 2014 McGraw-Hill Education

Of course, the method defined by a lambda expression does not have a name.
A slightly more interesting lambda expression is shown here:

() -> Math.random() * 100

This lambda expression obtains a pseudo-random value from Math.random(), multiplies it
by 100, and returns the result. It, too, does not require a parameter.

When a lambda expression requires a parameter, it is specified in the parameter list on
the left side of the lambda operator. Here is a simple example:

(n) -> (n % 2)==0

This lambda expression returns true if the value of parameter n is even. Although it is
possible to explicitly specify the type of a parameter, such as n in this case, often you won’t
need to do so because in many cases its type can be inferred. Like a named method, a
lambda expression can specify as many parameters as needed.

Functional Interfaces
As stated, a functional interface is an interface that specifies only one abstract method. If
you have been programming in Java for some time, you might at first think that all interface
methods are implicitly abstract. Although this was true prior to JDK 8, the situation has
changed. As explained in Chapter 9, beginning with JDK 8, it is possible to specify default
behavior for a method declared in an interface. This is called a default method. Today, an
interface method is abstract only if it does not specify a default implementation. Because
nondefault interface methods are implicitly abstract, there is no need to use the abstract
modifier (although you can specify it, if you like).

Here is an example of a functional interface:

interface MyNumber {
 double getValue();
}

In this case, the method getValue() is implicitly abstract, and it is the only method defined
by MyNumber. Thus, MyNumber is a functional interface, and its function is defined by
getValue().

As mentioned earlier, a lambda expression is not executed on its own. Rather, it forms
the implementation of the abstract method defined by the functional interface that specifies
its target type. As a result, a lambda expression can be specified only in a context in which a
target type is defined. One of these contexts is created when a lambda expression is assigned
to a functional interface reference. Other target type contexts include variable initialization,
return statements, and method arguments, to name a few.

Let’s work through an example that shows how a lambda expression can be used in an
assignment context. First, a reference to the functional interface MyNumber is declared:

// Create a reference to a MyNumber instance.
MyNumber myNum;

15-ch15.indd 383 11/03/14 2:16 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

384 PART I The Java Language

© 2014 McGraw-Hill Education

Next, a lambda expression is assigned to that interface reference:

// Use a lambda in an assignment context.
myNum = () -> 123.45;

When a lambda expression occurs in a target type context, an instance of a class is
automatically created that implements the functional interface, with the lambda expression
defining the behavior of the abstract method declared by the functional interface. When
that method is called through the target, the lambda expression is executed. Thus, a lambda
expression gives us a way to transform a code segment into an object.

In the preceding example, the lambda expression becomes the implementation for the
getValue() method. As a result, the following displays the value 123.45:

// Call getValue(), which is implemented by the previously assigned
// lambda expression.
System.out.println("myNum.getValue());

Because the lambda expression assigned to myNum returns the value 123.45, that is the
value obtained when getValue() is called.

In order for a lambda expression to be used in a target type context, the type of the
abstract method and the type of the lambda expression must be compatible. For example,
if the abstract method specifies two int parameters, then the lambda must specify two
parameters whose type either is explicitly int or can be implicitly inferred as int by the
context. In general, the type and number of the lambda expression’s parameters must be
compatible with the method’s parameters; the return types must be compatible; and any
exceptions thrown by the lambda expression must be acceptable to the method.

Some Lambda Expression Examples
With the preceding discussion in mind, let’s look at some simple examples that illustrate
the basic lambda expression concepts. The first example puts together the pieces shown in
the foregoing section.

// Demonstrate a simple lambda expression.

// A functional interface.
interface MyNumber {
 double getValue();
}

class LambdaDemo {
 public static void main(String args[])
 {
 MyNumber myNum; // declare an interface reference

 // Here, the lambda expression is simply a constant expression.
 // When it is assigned to myNum, a class instance is
 // constructed in which the lambda expression implements
 // the getValue() method in MyNumber.
 myNum = () -> 123.45;

15-ch15.indd 384 11/03/14 2:16 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 385

Pa
rt

 I

© 2014 McGraw-Hill Education

 // Call getValue(), which is provided by the previously assigned
 // lambda expression.
 System.out.println("A fixed value: " + myNum.getValue());

 // Here, a more complex expression is used.
 myNum = () -> Math.random() * 100;

 // These call the lambda expression in the previous line.
 System.out.println("A random value: " + myNum.getValue());
 System.out.println("Another random value: " + myNum.getValue());

 // A lambda expression must be compatible with the method
 // defined by the functional interface. Therefore, this won't work:
// myNum = () -> "123.03"; // Error!
 }
}

Sample output from the program is shown here:

A fixed value: 123.45
A random value: 88.90663650412304
Another random value: 53.00582701784129

As mentioned, the lambda expression must be compatible with the abstract method
that it is intended to implement. For this reason, the commented-out line at the end of the
preceding program is illegal because a value of type String is not compatible with double,
which is the return type required by getValue().

The next example shows the use of a parameter with a lambda expression:

// Demonstrate a lambda expression that takes a parameter.

// Another functional interface.
interface NumericTest {
 boolean test(int n);
}

class LambdaDemo2 {
 public static void main(String args[])
 {
 // A lambda expression that tests if a number is even.
 NumericTest isEven = (n) -> (n % 2)==0;

 if(isEven.test(10)) System.out.println("10 is even");
 if(!isEven.test(9)) System.out.println("9 is not even");

 // Now, use a lambda expression that tests if a number
 // is non-negative.
 NumericTest isNonNeg = (n) -> n >= 0;

 if(isNonNeg.test(1)) System.out.println("1 is non-negative");
 if(!isNonNeg.test(-1)) System.out.println("-1 is negative");
 }
}

15-ch15.indd 385 11/03/14 2:16 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

386 PART I The Java Language

© 2014 McGraw-Hill Education

The output from this program is shown here:

10 is even
9 is not even
1 is non-negative
-1 is negative

This program demonstrates a key fact about lambda expressions that warrants close
examination. Pay special attention to the lambda expression that performs the test for
evenness. It is shown again here:

(n) -> (n % 2)==0

Notice that the type of n is not specified. Rather, its type is inferred from the context. In this
case, its type is inferred from the parameter type of test() as defined by the NumericTest
interface, which is int. It is also possible to explicitly specify the type of a parameter in a
lambda expression. For example, this is also a valid way to write the preceding:

(int n) -> (n % 2)==0

Here, n is explicitly specified as int. Usually it is not necessary to explicitly specify the type,
but you can in those situations that require it.

This program demonstrates another important point about lambda expressions: A
functional interface reference can be used to execute any lambda expression that is
compatible with it. Notice that the program defines two different lambda expressions that
are compatible with the test() method of the functional interface NumericTest. The first,
called isEven, determines if a value is even. The second, called isNonNeg, checks if a value
is non-negative. In each case, the value of the parameter n is tested. Because each lambda
expression is compatible with test(), each can be executed through a NumericTest reference.

One other point before moving on. When a lambda expression has only one parameter,
it is not necessary to surround the parameter name with parentheses when it is specified on
the left side of the lambda operator. For example, this is also a valid way to write the lambda
expression used in the program:

n -> (n % 2)==0

For consistency, this book will surround all lambda expression parameter lists with
parentheses, even those containing only one parameter. Of course, you are free to adopt
a different style.

The next program demonstrates a lambda expression that takes two parameters. In this
case, the lambda expression tests if one number is a factor of another.

// Demonstrate a lambda expression that takes two parameters.

interface NumericTest2 {
 boolean test(int n, int d);
}

class LambdaDemo3 {

15-ch15.indd 386 11/03/14 2:16 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 387

Pa
rt

 I

© 2014 McGraw-Hill Education

 public static void main(String args[])
 {
 // This lambda expression determines if one number is
 // a factor of another.
 NumericTest2 isFactor = (n, d) -> (n % d) == 0;

 if(isFactor.test(10, 2))
 System.out.println("2 is a factor of 10");

 if(!isFactor.test(10, 3))
 System.out.println("3 is not a factor of 10");
 }
}

The output is shown here:

2 is a factor of 10
3 is not a factor of 10

In this program, the functional interface NumericTest2 defines the test() method:

boolean test(int n, int d);

In this version, test() specifies two parameters. Thus, for a lambda expression to be
compatible with test(), the lambda expression must also specify two parameters. Notice
how they are specified:

(n, d) -> (n % d) == 0

The two parameters, n and d, are specified in the parameter list, separated by commas. This
example can be generalized. Whenever more than one parameter is required, the parameters
are specified, separated by commas, in a parenthesized list on the left side of the lambda
operator.

Here is an important point about multiple parameters in a lambda expression: If you
need to explicitly declare the type of a parameter, then all of the parameters must have
declared types. For example, this is legal:

(int n, int d) -> (n % d) == 0

But this is not:

(int n, d) -> (n % d) == 0

Block Lambda Expressions
The body of the lambdas shown in the preceding examples consist of a single expression.
These types of lambda bodies are referred to as expression bodies, and lambdas that have
expression bodies are sometimes called expression lambdas. In an expression body, the code
on the right side of the lambda operator must consist of a single expression. While

15-ch15.indd 387 11/03/14 2:16 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

388 PART I The Java Language

© 2014 McGraw-Hill Education

expression lambdas are quite useful, sometimes the situation will require more than a
single expression. To handle such cases, Java supports a second type of lambda expression
in which the code on the right side of the lambda operator consists of a block of code that
can contain more than one statement. This type of lambda body is called a block body.
Lambdas that have block bodies are sometimes referred to as block lambdas.

A block lambda expands the types of operations that can be handled within a lambda
expression because it allows the body of the lambda to contain multiple statements. For
example, in a block lambda you can declare variables, use loops, specify if and switch
statements, create nested blocks, and so on. A block lambda is easy to create. Simply
enclose the body within braces as you would any other block of statements.

Aside from allowing multiple statements, block lambdas are used much like the
expression lambdas just discussed. One key difference, however, is that you must explicitly
use a return statement to return a value. This is necessary because a block lambda body
does not represent a single expression.

Here is an example that uses a block lambda to compute and return the factorial of an
int value:

// A block lambda that computes the factorial of an int value.

interface NumericFunc {
 int func(int n);
}

class BlockLambdaDemo {
 public static void main(String args[])
 {

 // This block lambda computes the factorial of an int value.
 NumericFunc factorial = (n) -> {
 int result = 1;

 for(int i=1; i <= n; i++)
 result = i * result;

 return result;
 };

 System.out.println("The factoral of 3 is " + factorial.func(3));
 System.out.println("The factoral of 5 is " + factorial.func(5));
 }
}

The output is shown here:

The factorial of 3 is 6
The factorial of 5 is 120

In the program, notice that the block lambda declares a variable called result, uses a for
loop, and has a return statement. These are legal inside a block lambda body. In essence,
the block body of a lambda is similar to a method body. One other point. When a return

15-ch15.indd 388 11/03/14 2:16 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 389

Pa
rt

 I

© 2014 McGraw-Hill Education

statement occurs within a lambda expression, it simply causes a return from the lambda. It
does not cause an enclosing method to return.

Another example of a block lambda is shown in the following program. It reverses the
characters in a string.

// A block lambda that reverses the characters in a string.

interface StringFunc {
 String func(String n);
}

class BlockLambdaDemo2 {
 public static void main(String args[])
 {

 // This block lambda reverses the characters in a string.
 StringFunc reverse = (str) -> {
 String result = "";
 int i;

 for(i = str.length()-1; i >= 0; i--)
 result += str.charAt(i);

 return result;
 };

 System.out.println("Lambda reversed is " +
 reverse.func("Lambda"));
 System.out.println("Expression reversed is " +
 reverse.func("Expression"));
 }
}

The output is shown here:

Lambda reversed is adbmaL
Expression reversed is noisserpxE

In this example, the functional interface StringFunc declares the func() method. This
method takes a parameter of type String and has a return type of String. Thus, in the
reverse lambda expression, the type of str is inferred to be String. Notice that the charAt()
method is called on str. This is legal because of the inference that str is of type String.

Generic Functional Interfaces
A lambda expression, itself, cannot specify type parameters. Thus, a lambda expression
cannot be generic. (Of course, because of type inference, all lambda expressions exhibit
some “generic-like” qualities.) However, the functional interface associated with a lambda
expression can be generic. In this case, the target type of the lambda expression is

15-ch15.indd 389 11/03/14 2:16 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

390 PART I The Java Language

© 2014 McGraw-Hill Education

determined, in part, by the type argument or arguments specified when a functional
interface reference is declared.

To understand the value of generic functional interfaces, consider this. The two
examples in the previous section used two different functional interfaces, one called
NumericFunc and the other called StringFunc. However, both defined a method called
func() that took one parameter and returned a result. In the first case, the type of the
parameter and return type was int. In the second case, the parameter and return type was
String. Thus, the only difference between the two methods was the type of data they
required. Instead of having two functional interfaces whose methods differ only in their
data types, it is possible to declare one generic interface that can be used to handle both
circumstances. The following program shows this approach:

// Use a generic functional interface with lambda expressions.

// A generic functional interface.
interface SomeFunc<T> {
 T func(T t);
}

class GenericFunctionalInterfaceDemo {
 public static void main(String args[])
 {

 // Use a String-based version of SomeFunc.
 SomeFunc<String> reverse = (str) -> {
 String result = "";
 int i;

 for(i = str.length()-1; i >= 0; i--)
 result += str.charAt(i);

 return result;
 };

 System.out.println("Lambda reversed is " +
 reverse.func("Lambda"));
 System.out.println("Expression reversed is " +
 reverse.func("Expression"));

 // Now, use an Integer-based version of SomeFunc.
 SomeFunc<Integer> factorial = (n) -> {
 int result = 1;

 for(int i=1; i <= n; i++)
 result = i * result;

 return result;
 };

 System.out.println("The factoral of 3 is " + factorial.func(3));
 System.out.println("The factoral of 5 is " + factorial.func(5));
 }
}

15-ch15.indd 390 11/03/14 2:16 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 391

Pa
rt

 I

© 2014 McGraw-Hill Education

The output is shown here:

Lambda reversed is adbmaL
Expression reversed is noisserpxE
The factoral of 3 is 6
The factoral of 5 is 120

In the program, the generic functional interface SomeFunc is declared as shown here:

interface SomeFunc<T> {
 T func(T t);
}

Here, T specifies both the return type and the parameter type of func(). This means that it
is compatible with any lambda expression that takes one parameter and returns a value of
the same type.

The SomeFunc interface is used to provide a reference to two different types of lambdas.
The first uses type String. The second uses type Integer. Thus, the same functional interface
can be used to refer to the reverse lambda and the factorial lambda. Only the type argument
passed to SomeFunc differs.

Passing Lambda Expressions as Arguments
As explained earlier, a lambda expression can be used in any context that provides a target
type. One of these is when a lambda expression is passed as an argument. In fact, passing a
lambda expression as an argument is a common use of lambdas. Moreover, it is a very
powerful use because it gives you a way to pass executable code as an argument to a method.
This greatly enhances the expressive power of Java.

To pass a lambda expression as an argument, the type of the parameter receiving the
lambda expression argument must be of a functional interface type compatible with the
lambda. Although using a lambda expression as an argument is straightforward, it is still
helpful to see it in action. The following program demonstrates the process:

// Use lambda expressions as an argument to a method.

interface StringFunc {
 String func(String n);
}

class LambdasAsArgumentsDemo {

 // This method has a functional interface as the type of
 // its first parameter. Thus, it can be passed a reference to
 // any instance of that interface, including the instance created
 // by a lambda expression.
 // The second parameter specifies the string to operate on.
 static String stringOp(StringFunc sf, String s) {
 return sf.func(s);
 }

 public static void main(String args[])

15-ch15.indd 391 11/03/14 2:16 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

392 PART I The Java Language

© 2014 McGraw-Hill Education

 {
 String inStr = "Lambdas add power to Java";
 String outStr;

 System.out.println("Here is input string: " + inStr);

 // Here, a simple expression lambda that uppercases a string
 // is passed to stringOp().
 outStr = stringOp((str) -> str.toUpperCase(), inStr);
 System.out.println("The string in uppercase: " + outStr);

 // This passes a block lambda that removes spaces.
 outStr = stringOp((str) -> {
 String result = "";
 int i;

 for(i = 0; i < str.length(); i++)
 if(str.charAt(i) != ' ')
 result += str.charAt(i);

 return result;
 }, inStr);

 System.out.println("The string with spaces removed: " + outStr);

 // Of course, it is also possible to pass a StringFunc instance
 // created by an earlier lambda expression. For example,
 // after this declaration executes, reverse refers to an
 // instance of StringFunc.
 StringFunc reverse = (str) -> {
 String result = "";
 int i;

 for(i = str.length()-1; i >= 0; i--)
 result += str.charAt(i);

 return result;
 };

 // Now, reverse can be passed as the first parameter to stringOp()
 // since it refers to a StringFunc object.
 System.out.println("The string reversed: " +
 stringOp(reverse, inStr));
 }
}

The output is shown here:

Here is input string: Lambdas add power to Java
The string in uppercase: LAMBDAS ADD POWER TO JAVA
The string with spaces removed: LambdasaddpowertoJava
The string reversed: avaJ ot rewop dda sadbmaL

15-ch15.indd 392 11/03/14 2:16 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 393

Pa
rt

 I

© 2014 McGraw-Hill Education

In the program, first notice the stringOp() method. It has two parameters. The first is
of type StringFunc, which is a functional interface. Thus, this parameter can receive a
reference to any instance of StringFunc, including one created by a lambda expression. The
second argument of stringOp() is of type String, and this is the string operated on.

Next, notice the first call to stringOp(), shown again here:

outStr = stringOp((str) -> str.toUpperCase(), inStr);

Here, a simple expression lambda is passed as an argument. When this occurs, an instance of
the functional interface StringFunc is created and a reference to that object is passed to the
first parameter of stringOp(). Thus, the lambda code, embedded in a class instance, is passed
to the method. The target type context is determined by the type of parameter. Because the
lambda expression is compatible with that type, the call is valid. Embedding simple lambdas,
such as the one just shown, inside a method call is often a convenient technique—especially
when the lambda expression is intended for a single use.

Next, the program passes a block lambda to stringOp(). This lambda removes spaces
from a string. It is shown again here:

outStr = stringOp((str) -> {
 String result = "";
 int i;

 for(i = 0; i < str.length(); i++)
 if(str.charAt(i) != ' ')
 result += str.charAt(i);

 return result;
 }, inStr);

Although this uses a block lambda, the process of passing the lambda expression is the
same as just described for the simple expression lambda. In this case, however, some
programmers will find the syntax a bit awkward.

When a block lambda seems overly long to embed in a method call, it is an easy matter
to assign that lambda to a functional interface variable, as the previous examples have
done. Then, you can simply pass that reference to the method. This technique is shown at
the end of the program. There, a block lambda is defined that reverses a string. This
lambda is assigned to reverse, which is a reference to a StringFunc instance. Thus, reverse
can be used as an argument to the first parameter of stringOp(). The program then calls
stringOp(), passing in reverse and the string on which to operate. Because the instance
obtained by the evaluation of each lambda expression is an implementation of StringFunc,
each can be used as the first parameter to stringOp().

One last point: In addition to variable initialization, assignment, and argument passing,
the following also constitute target type contexts: casts, the ? operator, array initializers,
return statements, and lambda expressions, themselves.

15-ch15.indd 393 11/03/14 2:16 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

394 PART I The Java Language

© 2014 McGraw-Hill Education

Lambda Expressions and Exceptions
A lambda expression can throw an exception. However, it if throws a checked exception,
then that exception must be compatible with the exception(s) listed in the throws clause of
the abstract method in the functional interface. Here is an example that illustrates this fact.
It computes the average of an array of double values. If a zero-length array is passed, however,
it throws the custom exception EmptyArrayException. As the example shows, this exception
is listed in the throws clause of func() declared inside the DoubleNumericArrayFunc
functional interface.

// Throw an exception from a lambda expression.

interface DoubleNumericArrayFunc {
 double func(double[] n) throws EmptyArrayException;
}

class EmptyArrayException extends Exception {
 EmptyArrayException() {
 super("Array Empty");
 }
}

class LambdaExceptionDemo {

 public static void main(String args[]) throws EmptyArrayException
 {
 double[] values = { 1.0, 2.0, 3.0, 4.0 };

 // This block lambda computes the average of an array of doubles.
 DoubleNumericArrayFunc average = (n) -> {
 double sum = 0;

 if(n.length == 0)
 throw new EmptyArrayException();

 for(int i=0; i < n.length; i++)
 sum += n[i];

 return sum / n.length;
 };

 System.out.println("The average is " + average.func(values));

 // This causes an exception to be thrown.
 System.out.println("The average is " + average.func(new double[0]));
 }
}

The first call to average.func() returns the value 2.5. The second call, which passes a
zero-length array, causes an EmptyArrayException to be thrown. Remember, the inclusion
of the throws clause in func() is necessary. Without it, the program will not compile because
the lambda expression will no longer be compatible with func().

15-ch15.indd 394 11/03/14 2:16 PM

BeginNew-Tight / Java: A Beginner's Guide, Sixth Edition / Herbert Schildt / 925-2 / Chapter 4

103

Chapter 4
Introducing Classes,
Objects, and Methods

04-ch04.indd 103 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 104 Java: A Beginner’s Guide

Key Skills & Concepts

● Know the fundamentals of the class

● Understand how objects are created

● Understand how reference variables are assigned

● Create methods, return values, and use parameters

● Use the return keyword

● Return a value from a method

● Add parameters to a method

● Utilize constructors

● Create parameterized constructors

● Understand new

● Understand garbage collection and finalizers

● Use the this keyword

Before you can go much further in your study of Java, you need to learn about the class. The
class is the essence of Java. It is the foundation upon which the entire Java language is built

because the class defines the nature of an object. As such, the class forms the basis for object-
oriented programming in Java. Within a class are defined data and code that acts upon that data.
The code is contained in methods. Because classes, objects, and methods are fundamental to
Java, they are introduced in this chapter. Having a basic understanding of these features will
allow you to write more sophisticated programs and better understand certain key Java elements
described in the following chapter.

Class Fundamentals
Since all Java program activity occurs within a class, we have been using classes since the start
of this book. Of course, only extremely simple classes have been used, and we have not taken
advantage of the majority of their features. As you will see, classes are substantially more
powerful than the limited ones presented so far.

Let’s begin by reviewing the basics. A class is a template that defines the form of an
object. It specifies both the data and the code that will operate on that data. Java uses a class
specification to construct objects. Objects are instances of a class. Thus, a class is essentially

04-ch04.indd 104 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 105

a set of plans that specify how to build an object. It is important to be clear on one issue:
a class is a logical abstraction. It is not until an object of that class has been created that a
physical representation of that class exists in memory.

One other point: Recall that the methods and variables that constitute a class are called
members of the class. The data members are also referred to as instance variables.

The General Form of a Class
When you define a class, you declare its exact form and nature. You do this by specifying
the instance variables that it contains and the methods that operate on them. Although very
simple classes might contain only methods or only instance variables, most real-world classes
contain both.

A class is created by using the keyword class. A simplified general form of a class
definition is shown here:

class classname {
 // declare instance variables
 type var1;
 type var2;
 // ...
 type varN;

 // declare methods
 type method1(parameters) {
 // body of method
 }
 type method2(parameters) {
 // body of method
 }
 // ...
 type methodN(parameters) {
 // body of method
 }
}

Although there is no syntactic rule that enforces it, a well-designed class should define
one and only one logical entity. For example, a class that stores names and telephone numbers
will not normally also store information about the stock market, average rainfall, sunspot
cycles, or other unrelated information. The point here is that a well-designed class groups
logically connected information. Putting unrelated information into the same class will quickly
destructure your code!

Up to this point, the classes that we have been using have had only one method: main().
Soon you will see how to create others. However, notice that the general form of a class does
not specify a main() method. A main() method is required only if that class is the starting
point for your program. Also, some types of Java applications, such as applets, don’t require
a main().

04-ch04.indd 105 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 106 Java: A Beginner’s Guide

Defining a Class
To illustrate classes we will develop a class that encapsulates information about vehicles, such
as cars, vans, and trucks. This class is called Vehicle, and it will store three items of information
about a vehicle: the number of passengers that it can carry, its fuel capacity, and its average fuel
consumption (in miles per gallon).

The first version of Vehicle is shown next. It defines three instance variables: passengers,
fuelcap, and mpg. Notice that Vehicle does not contain any methods. Thus, it is currently a
data-only class. (Subsequent sections will add methods to it.)

class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon
}

A class definition creates a new data type. In this case, the new data type is called Vehicle.
You will use this name to declare objects of type Vehicle. Remember that a class declaration is
only a type description; it does not create an actual object. Thus, the preceding code does not
cause any objects of type Vehicle to come into existence.

To actually create a Vehicle object, you will use a statement like the following:

Vehicle minivan = new Vehicle(); // create a Vehicle object called minivan

After this statement executes, minivan will be an instance of Vehicle. Thus, it will have
“physical” reality. For the moment, don’t worry about the details of this statement.

Each time you create an instance of a class, you are creating an object that contains its own
copy of each instance variable defined by the class. Thus, every Vehicle object will contain its
own copies of the instance variables passengers, fuelcap, and mpg. To access these variables,
you will use the dot (.) operator. The dot operator links the name of an object with the name of
a member. The general form of the dot operator is shown here:

object.member

Thus, the object is specified on the left, and the member is put on the right. For example, to
assign the fuelcap variable of minivan the value 16, use the following statement:

minivan.fuelcap = 16;

In general, you can use the dot operator to access both instance variables and methods.
Here is a complete program that uses the Vehicle class:

/* A program that uses the Vehicle class.

 Call this file VehicleDemo.java
*/
class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon

04-ch04.indd 106 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 107

}

// This class declares an object of type Vehicle.
class VehicleDemo {
 public static void main(String args[]) {
 Vehicle minivan = new Vehicle();
 int range;

 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelcap = 16;
 minivan.mpg = 21;

 // compute the range assuming a full tank of gas
 range = minivan.fuelcap * minivan.mpg;
 System.out.println("Minivan can carry " + minivan.passengers +
 " with a range of " + range);
 }
}

You should call the file that contains this program VehicleDemo.java because the main()
method is in the class called VehicleDemo, not the class called Vehicle. When you compile
this program, you will find that two .class files have been created, one for Vehicle and one for
VehicleDemo. The Java compiler automatically puts each class into its own .class file. It is not
necessary for both the Vehicle and the VehicleDemo class to be in the same source file. You
could put each class in its own file, called Vehicle.java and VehicleDemo.java, respectively.

To run this program, you must execute VehicleDemo.class. The following output is displayed:

Minivan can carry 7 with a range of 336

Before moving on, let’s review a fundamental principle: each object has its own copies of
the instance variables defined by its class. Thus, the contents of the variables in one object can
differ from the contents of the variables in another. There is no connection between the two
objects except for the fact that they are both objects of the same type. For example, if you have
two Vehicle objects, each has its own copy of passengers, fuelcap, and mpg, and the contents
of these can differ between the two objects. The following program demonstrates this fact.
(Notice that the class with main() is now called TwoVehicles.)

// This program creates two Vehicle objects.

class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon
}

// This class declares an object of type Vehicle.
class TwoVehicles {
 public static void main(String args[]) {

Notice the use of the dot
operator to access a member.

04-ch04.indd 107 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 108 Java: A Beginner’s Guide

 Vehicle minivan = new Vehicle();
 Vehicle sportscar = new Vehicle();

 int range1, range2;

 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelcap = 16;
 minivan.mpg = 21;

 // assign values to fields in sportscar
 sportscar.passengers = 2;
 sportscar.fuelcap = 14;
 sportscar.mpg = 12;

 // compute the ranges assuming a full tank of gas
 range1 = minivan.fuelcap * minivan.mpg;
 range2 = sportscar.fuelcap * sportscar.mpg;

 System.out.println("Minivan can carry " + minivan.passengers +
 " with a range of " + range1);

 System.out.println("Sportscar can carry " + sportscar.passengers +
 " with a range of " + range2);
 }
}

The output produced by this program is shown here:

Minivan can carry 7 with a range of 336
Sportscar can carry 2 with a range of 168

As you can see, minivan’s data is completely separate from the data contained in sportscar.
The following illustration depicts this situation.

How Objects Are Created
In the preceding programs, the following line was used to declare an object of type Vehicle:

Vehicle minivan = new Vehicle();

Remember,
minivan and
sportscar refer
to separate
objects.

04-ch04.indd 108 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 109

This declaration performs two functions. First, it declares a variable called minivan of the class
type Vehicle. This variable does not define an object. Instead, it is simply a variable that can
refer to an object. Second, the declaration creates a physical copy of the object and assigns to
minivan a reference to that object. This is done by using the new operator.

The new operator dynamically allocates (that is, allocates at run time) memory for an object
and returns a reference to it. This reference is, more or less, the address in memory of the object
allocated by new. This reference is then stored in a variable. Thus, in Java, all class objects must
be dynamically allocated.

The two steps combined in the preceding statement can be rewritten like this to show each
step individually:

Vehicle minivan; // declare reference to object
minivan = new Vehicle(); // allocate a Vehicle object

The first line declares minivan as a reference to an object of type Vehicle. Thus, minivan is
a variable that can refer to an object, but it is not an object itself. At this point, minivan does
not refer to an object. The next line creates a new Vehicle object and assigns a reference to it
to minivan. Now, minivan is linked with an object.

Reference Variables and Assignment
In an assignment operation, object reference variables act differently than do variables of
a primitive type, such as int. When you assign one primitive-type variable to another, the
situation is straightforward. The variable on the left receives a copy of the value of the variable
on the right. When you assign one object reference variable to another, the situation is a bit
more complicated because you are changing the object that the reference variable refers to.
The effect of this difference can cause some counterintuitive results. For example, consider the
following fragment:

Vehicle car1 = new Vehicle();
Vehicle car2 = car1;

At first glance, it is easy to think that car1 and car2 refer to different objects, but this is not
the case. Instead, car1 and car2 will both refer to the same object. The assignment of car1 to
car2 simply makes car2 refer to the same object as does car1. Thus, the object can be acted
upon by either car1 or car2. For example, after the assignment

car1.mpg = 26;

executes, both of these println() statements

System.out.println(car1.mpg);
System.out.println(car2.mpg);

display the same value: 26.

04-ch04.indd 109 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 110 Java: A Beginner’s Guide

Although car1 and car2 both refer to the same object, they are not linked in any other way.
For example, a subsequent assignment to car2 simply changes the object to which car2 refers.
For example:

Vehicle car1 = new Vehicle();
Vehicle car2 = car1;
Vehicle car3 = new Vehicle();

car2 = car3; // now car2 and car3 refer to the same object.

After this sequence executes, car2 refers to the same object as car3. The object referred to by
car1 is unchanged.

Methods
As explained, instance variables and methods are constituents of classes. So far, the Vehicle
class contains data, but no methods. Although data-only classes are perfectly valid, most
classes will have methods. Methods are subroutines that manipulate the data defined by
the class and, in many cases, provide access to that data. In most cases, other parts of your
program will interact with a class through its methods.

A method contains one or more statements. In well-written Java code, each method
performs only one task. Each method has a name, and it is this name that is used to call the
method. In general, you can give a method whatever name you please. However, remember
that main() is reserved for the method that begins execution of your program. Also, don’t use
Java’s keywords for method names.

When denoting methods in text, this book has used and will continue to use a convention that
has become common when writing about Java. A method will have parentheses after its name.
For example, if a method’s name is getval, it will be written getval() when its name is used in a
sentence. This notation will help you distinguish variable names from method names in this book.

The general form of a method is shown here:

ret-type name(parameter-list) {
 // body of method
}

Here, ret-type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return type
must be void. The name of the method is specified by name. This can be any legal identifier
other than those already used by other items within the current scope. The parameter-list is a
sequence of type and identifier pairs separated by commas. Parameters are essentially variables
that receive the value of the arguments passed to the method when it is called. If the method
has no parameters, the parameter list will be empty.

Adding a Method to the Vehicle Class
As just explained, the methods of a class typically manipulate and provide access to the data of
the class. With this in mind, recall that main() in the preceding examples computed the range of
a vehicle by multiplying its fuel consumption rate by its fuel capacity. While technically correct,

04-ch04.indd 110 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 111

this is not the best way to handle this computation. The calculation of a vehicle’s range is
something that is best handled by the Vehicle class itself. The reason for this conclusion is easy
to understand: the range of a vehicle is dependent upon the capacity of the fuel tank and the
rate of fuel consumption, and both of these quantities are encapsulated by Vehicle. By adding
a method to Vehicle that computes the range, you are enhancing its object-oriented structure.
To add a method to Vehicle, specify it within Vehicle’s declaration. For example, the following
version of Vehicle contains a method called range() that displays the range of the vehicle.

// Add range to Vehicle.

class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon

 // Display the range.
 void range() {
 System.out.println("Range is " + fuelcap * mpg);
 }
}

class AddMeth {
 public static void main(String args[]) {
 Vehicle minivan = new Vehicle();
 Vehicle sportscar = new Vehicle();

 int range1, range2;

 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelcap = 16;
 minivan.mpg = 21;

 // assign values to fields in sportscar
 sportscar.passengers = 2;
 sportscar.fuelcap = 14;
 sportscar.mpg = 12;

 System.out.print("Minivan can carry " + minivan.passengers +
 ". ");

 minivan.range(); // display range of minivan

 System.out.print("Sportscar can carry " + sportscar.passengers +
 ". ");

 sportscar.range(); // display range of sportscar.
 }
}

The range() method is contained within the Vehicle class.

Notice that fuelcap and mpg are used directly, without the dot operator.

04-ch04.indd 111 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 112 Java: A Beginner’s Guide

This program generates the following output:

Minivan can carry 7. Range is 336
Sportscar can carry 2. Range is 168

Let’s look at the key elements of this program, beginning with the range() method itself.
The first line of range() is

void range() {

This line declares a method called range that has no parameters. Its return type is void. Thus,
range() does not return a value to the caller. The line ends with the opening curly brace of the
method body.

The body of range() consists solely of this line:

System.out.println("Range is " + fuelcap * mpg);

This statement displays the range of the vehicle by multiplying fuelcap by mpg. Since each
object of type Vehicle has its own copy of fuelcap and mpg, when range() is called, the range
computation uses the calling object’s copies of those variables.

The range() method ends when its closing curly brace is encountered. This causes
program control to transfer back to the caller.

Next, look closely at this line of code from inside main():

minivan.range();

This statement invokes the range() method on minivan. That is, it calls range() relative to
the minivan object, using the object’s name followed by the dot operator. When a method is
called, program control is transferred to the method. When the method terminates, control is
transferred back to the caller, and execution resumes with the line of code following the call.

In this case, the call to minivan.range() displays the range of the vehicle defined by minivan.
In similar fashion, the call to sportscar.range() displays the range of the vehicle defined by
sportscar. Each time range() is invoked, it displays the range for the specified object.

There is something very important to notice inside the range() method: the instance
variables fuelcap and mpg are referred to directly, without preceding them with an object name
or the dot operator. When a method uses an instance variable that is defined by its class, it does
so directly, without explicit reference to an object and without use of the dot operator. This is
easy to understand if you think about it. A method is always invoked relative to some object of
its class. Once this invocation has occurred, the object is known. Thus, within a method, there is
no need to specify the object a second time. This means that fuelcap and mpg inside range()
implicitly refer to the copies of those variables found in the object that invokes range().

Returning from a Method
In general, there are two conditions that cause a method to return—first, as the range() method
in the preceding example shows, when the method’s closing curly brace is encountered. The
second is when a return statement is executed. There are two forms of return—one for use in

04-ch04.indd 112 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 113

void methods (those that do not return a value) and one for returning values. The first form is
examined here. The next section explains how to return values.

In a void method, you can cause the immediate termination of a method by using this form
of return:

return ;

When this statement executes, program control returns to the caller, skipping any remaining
code in the method. For example, consider this method:

void myMeth() {
 int i;

 for(i=0; i<10; i++) {
 if(i == 5) return; // stop at 5
 System.out.println();
 }
}

Here, the for loop will only run from 0 to 5, because once i equals 5, the method returns. It is
permissible to have multiple return statements in a method, especially when there are two or
more routes out of it. For example:

void myMeth() {
 // ...
 if(done) return;
 // ...
 if(error) return;
 // ...
}

Here, the method returns if it is done or if an error occurs. Be careful, however, because
having too many exit points in a method can destructure your code; so avoid using them
casually. A well-designed method has well-defined exit points.

To review: A void method can return in one of two ways—its closing curly brace is
reached, or a return statement is executed.

Returning a Value
Although methods with a return type of void are not rare, most methods will return a value.
In fact, the ability to return a value is one of the most useful features of a method. You have
already seen one example of a return value: when we used the sqrt() function to obtain a
square root.

Return values are used for a variety of purposes in programming. In some cases, such as
with sqrt(), the return value contains the outcome of some calculation. In other cases, the
return value may simply indicate success or failure. In still others, it may contain a status code.
Whatever the purpose, using method return values is an integral part of Java programming.

04-ch04.indd 113 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 114 Java: A Beginner’s Guide

Methods return a value to the calling routine using this form of return:

return value;

Here, value is the value returned. This form of return can be used only with methods that have
a non-void return type. Furthermore, a non-void method must return a value by using this form
of return.

You can use a return value to improve the implementation of range(). Instead of displaying
the range, a better approach is to have range() compute the range and return this value. Among
the advantages to this approach is that you can use the value for other calculations. The following
example modifies range() to return the range rather than displaying it.

// Use a return value.

class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon

 // Return the range.
 int range() {
 return mpg * fuelcap;
 }
}

class RetMeth {
 public static void main(String args[]) {
 Vehicle minivan = new Vehicle();
 Vehicle sportscar = new Vehicle();

 int range1, range2;

 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelcap = 16;
 minivan.mpg = 21;

 // assign values to fields in sportscar
 sportscar.passengers = 2;
 sportscar.fuelcap = 14;
 sportscar.mpg = 12;

 // get the ranges
 range1 = minivan.range();
 range2 = sportscar.range();

Return the range for a given vehicle.

Assign the value
returned to a variable.

04-ch04.indd 114 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 115

 System.out.println("Minivan can carry " + minivan.passengers +
 " with range of " + range1 + " Miles");

 System.out.println("Sportscar can carry " + sportscar.passengers +
 " with range of " + range2 + " miles");

 }
}

The output is shown here:

Minivan can carry 7 with range of 336 Miles
Sportscar can carry 2 with range of 168 miles

In the program, notice that when range() is called, it is put on the right side of an assignment
statement. On the left is a variable that will receive the value returned by range(). Thus, after

range1 = minivan.range();

executes, the range of the minivan object is stored in range1.
Notice that range() now has a return type of int. This means that it will return an integer

value to the caller. The return type of a method is important because the type of data returned
by a method must be compatible with the return type specified by the method. Thus, if you
want a method to return data of type double, its return type must be type double.

Although the preceding program is correct, it is not written as efficiently as it could be.
Specifically, there is no need for the range1 or range2 variables. A call to range() can be
used in the println() statement directly, as shown here:

System.out.println("Minivan can carry " + minivan.passengers +
 " with range of " + minivan.range() + " Miles");

In this case, when println() is executed, minivan.range() is called automatically and its value
will be passed to println(). Furthermore, you can use a call to range() whenever the range of a
Vehicle object is needed. For example, this statement compares the ranges of two vehicles:

if(v1.range() > v2.range()) System.out.println("v1 has greater range");

Using Parameters
It is possible to pass one or more values to a method when the method is called. Recall that a
value passed to a method is called an argument. Inside the method, the variable that receives
the argument is called a parameter. Parameters are declared inside the parentheses that follow
the method’s name. The parameter declaration syntax is the same as that used for variables.
A parameter is within the scope of its method, and aside from its special task of receiving an
argument, it acts like any other local variable.

04-ch04.indd 115 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 116 Java: A Beginner’s Guide

Here is a simple example that uses a parameter. Inside the ChkNum class, the method
isEven() returns true if the value that it is passed is even. It returns false otherwise. Therefore,
isEven() has a return type of boolean.

// A simple example that uses a parameter.

class ChkNum {
 // return true if x is even
 boolean isEven(int x) {
 if((x%2) == 0) return true;
 else return false;
 }
}

class ParmDemo {
 public static void main(String args[]) {
 ChkNum e = new ChkNum();

 if(e.isEven(10)) System.out.println("10 is even.");

 if(e.isEven(9)) System.out.println("9 is even.");

 if(e.isEven(8)) System.out.println("8 is even.");

 }
}

Here is the output produced by the program:

10 is even.
8 is even.

In the program, isEven() is called three times, and each time a different value is passed.
Let’s look at this process closely. First, notice how isEven() is called. The argument is specified
between the parentheses. When isEven() is called the first time, it is passed the value 10. Thus,
when isEven() begins executing, the parameter x receives the value 10. In the second call, 9 is
the argument, and x, then, has the value 9. In the third call, the argument is 8, which is the value
that x receives. The point is that the value passed as an argument when isEven() is called is the
value received by its parameter, x.

A method can have more than one parameter. Simply declare each parameter, separating
one from the next with a comma. For example, the Factor class defines a method called
isFactor() that determines whether the first parameter is a factor of the second.

class Factor {
 boolean isFactor(int a, int b) {
 if((b % a) == 0) return true;
 else return false;

Here, x is an integer parameter of isEven().

Pass arguments
to isEven().

This method has two parameters.

04-ch04.indd 116 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 117

 }
}
class IsFact {
 public static void main(String args[]) {
 Factor x = new Factor();

 if(x.isFactor(2, 20)) System.out.println("2 is factor");
 if(x.isFactor(3, 20)) System.out.println("this won't be displayed");

 }
}

Notice that when isFactor() is called, the arguments are also separated by commas.
When using multiple parameters, each parameter specifies its own type, which can differ

from the others. For example, this is perfectly valid:

int myMeth(int a, double b, float c) {
// ...

Adding a Parameterized Method to Vehicle
You can use a parameterized method to add a new feature to the Vehicle class: the ability
to compute the amount of fuel needed for a given distance. This new method is called
fuelneeded(). This method takes the number of miles that you want to drive and returns
the number of gallons of gas required. The fuelneeded() method is defined like this:

double fuelneeded(int miles) {
 return (double) miles / mpg;
}

Notice that this method returns a value of type double. This is useful since the amount of
fuel needed for a given distance might not be a whole number. The entire Vehicle class that
includes fuelneeded() is shown here:

/*
 Add a parameterized method that computes the
 fuel required for a given distance.
*/

class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon

Pass two arguments
to isFactor().

04-ch04.indd 117 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 118 Java: A Beginner’s Guide

 // Return the range.
 int range() {
 return mpg * fuelcap;
 }

 // Compute fuel needed for a given distance.
 double fuelneeded(int miles) {
 return (double) miles / mpg;
 }
}

class CompFuel {
 public static void main(String args[]) {
 Vehicle minivan = new Vehicle();
 Vehicle sportscar = new Vehicle();
 double gallons;
 int dist = 252;

 // assign values to fields in minivan
 minivan.passengers = 7;
 minivan.fuelcap = 16;
 minivan.mpg = 21;

 // assign values to fields in sportscar
 sportscar.passengers = 2;
 sportscar.fuelcap = 14;
 sportscar.mpg = 12;

 gallons = minivan.fuelneeded(dist);

 System.out.println("To go " + dist + " miles minivan needs " +
 gallons + " gallons of fuel.");

 gallons = sportscar.fuelneeded(dist);

 System.out.println("To go " + dist + " miles sportscar needs " +
 gallons + " gallons of fuel.");

 }
}

The output from the program is shown here:

To go 252 miles minivan needs 12.0 gallons of fuel.
To go 252 miles sportscar needs 21.0 gallons of fuel.

04-ch04.indd 118 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 119

Try This 4-1

(continued)

HelpClassDemo.java

 Creating a Help Class
If one were to try to summarize the essence of the class in one sentence,
it might be this: a class encapsulates functionality. Of course, sometimes

the trick is knowing where one “functionality” ends and another begins. As a general rule,
you will want your classes to be the building blocks of your larger application. In order to do
this, each class must represent a single functional unit that performs clearly delineated actions.
Thus, you will want your classes to be as small as possible—but no smaller! That is, classes
that contain extraneous functionality confuse and destructure code, but classes that contain too
little functionality are fragmented. What is the balance? It is at this point that the science of
programming becomes the art of programming. Fortunately, most programmers find that this
balancing act becomes easier with experience.

To begin to gain that experience you will convert the help system from Try This 3-3 in
the preceding chapter into a Help class. Let’s examine why this is a good idea. First, the help
system defines one logical unit. It simply displays the syntax for Java’s control statements.
Thus, its functionality is compact and well defined. Second, putting help in a class is an
esthetically pleasing approach. Whenever you want to offer the help system to a user, simply
instantiate a help-system object. Finally, because help is encapsulated, it can be upgraded or
changed without causing unwanted side effects in the programs that use it.

 1. Create a new file called HelpClassDemo.java. To save you some typing, you might want
to copy the file from Try This 3-3, Help3.java, into HelpClassDemo.java.

 2. To convert the help system into a class, you must first determine precisely what constitutes
the help system. For example, in Help3.java, there is code to display a menu, input the
user’s choice, check for a valid response, and display information about the item selected.
The program also loops until the letter q is pressed. If you think about it, it is clear that
the menu, the check for a valid response, and the display of the information are integral
to the help system. How user input is obtained, and whether repeated requests should be
processed, are not. Thus, you will create a class that displays the help information, the help
menu, and checks for a valid selection. Its methods will be called helpOn(), showMenu(),
and isValid(), respectively.

 3. Create the helpOn() method as shown here:

void helpOn(int what) {
 switch(what) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");
 System.out.println("else statement;");
 break;
 case '2':
 System.out.println("The switch:\n");
 System.out.println("switch(expression) {");

04-ch04.indd 119 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 120 Java: A Beginner’s Guide

 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");
 System.out.println(" // ...");
 System.out.println("}");
 break;
 case '3':
 System.out.println("The for:\n");
 System.out.print("for(init; condition; iteration)");
 System.out.println(" statement;");
 break;
 case '4':
 System.out.println("The while:\n");
 System.out.println("while(condition) statement;");
 break;
 case '5':
 System.out.println("The do-while:\n");
 System.out.println("do {");
 System.out.println(" statement;");
 System.out.println("} while (condition);");
 break;
 case '6':
 System.out.println("The break:\n");
 System.out.println("break; or break label;");
 break;
 case '7':
 System.out.println("The continue:\n");
 System.out.println("continue; or continue label;");
 break;
 }
 System.out.println();
}

 4. Next, create the showMenu() method:

void showMenu() {
 System.out.println("Help on:");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.println(" 3. for");
 System.out.println(" 4. while");
 System.out.println(" 5. do-while");
 System.out.println(" 6. break");
 System.out.println(" 7. continue\n");
 System.out.print("Choose one (q to quit): ");
}

04-ch04.indd 120 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 121

 5. Create the isValid() method, shown here:

boolean isValid(int ch) {
 if(ch < '1' | ch > '7' & ch != 'q') return false;
 else return true;
}

 6. Assemble the foregoing methods into the Help class, shown here:

class Help {
 void helpOn(int what) {
 switch(what) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");
 System.out.println("else statement;");
 break;
 case '2':
 System.out.println("The switch:\n");
 System.out.println("switch(expression) {");
 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");
 System.out.println(" // ...");
 System.out.println("}");
 break;
 case '3':
 System.out.println("The for:\n");
 System.out.print("for(init; condition; iteration)");
 System.out.println(" statement;");
 break;
 case '4':
 System.out.println("The while:\n");
 System.out.println("while(condition) statement;");
 break;
 case '5':
 System.out.println("The do-while:\n");
 System.out.println("do {");
 System.out.println(" statement;");
 System.out.println("} while (condition);");
 break;
 case '6':
 System.out.println("The break:\n");
 System.out.println("break; or break label;");
 break;

(continued)

04-ch04.indd 121 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 122 Java: A Beginner’s Guide

 case '7':
 System.out.println("The continue:\n");
 System.out.println("continue; or continue label;");
 break;
 }
 System.out.println();
 }

 void showMenu() {
 System.out.println("Help on:");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.println(" 3. for");
 System.out.println(" 4. while");
 System.out.println(" 5. do-while");
 System.out.println(" 6. break");
 System.out.println(" 7. continue\n");
 System.out.print("Choose one (q to quit): ");
 }

 boolean isValid(int ch) {
 if(ch < '1' | ch > '7' & ch != 'q') return false;
 else return true;
 }

}

 7. Finally, rewrite the main() method from Try This 3-3 so that it uses the new Help class. Call
this class HelpClassDemo.java. The entire listing for HelpClassDemo.java is shown here:

/*
 Try This 4-1

 Convert the help system from Try This 3-3 into
 a Help class.
*/

class Help {
 void helpOn(int what) {
 switch(what) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");
 System.out.println("else statement;");
 break;

04-ch04.indd 122 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 123

 case '2':
 System.out.println("The switch:\n");
 System.out.println("switch(expression) {");
 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");
 System.out.println(" // ...");
 System.out.println("}");
 break;
 case '3':
 System.out.println("The for:\n");
 System.out.print("for(init; condition; iteration)");
 System.out.println(" statement;");
 break;
 case '4':
 System.out.println("The while:\n");
 System.out.println("while(condition) statement;");
 break;
 case '5':
 System.out.println("The do-while:\n");
 System.out.println("do {");
 System.out.println(" statement;");
 System.out.println("} while (condition);");
 break;
 case '6':
 System.out.println("The break:\n");
 System.out.println("break; or break label;");
 break;
 case '7':
 System.out.println("The continue:\n");
 System.out.println("continue; or continue label;");
 break;
 }
 System.out.println();
 }

 void showMenu() {
 System.out.println("Help on:");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.println(" 3. for");
 System.out.println(" 4. while");
 System.out.println(" 5. do-while");
 System.out.println(" 6. break");
 System.out.println(" 7. continue\n");
 System.out.print("Choose one (q to quit): ");
 }

(continued)

04-ch04.indd 123 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 124 Java: A Beginner’s Guide

 boolean isValid(int ch) {
 if(ch < '1' | ch > '7' & ch != 'q') return false;
 else return true;
 }

}

class HelpClassDemo {
 public static void main(String args[])
 throws java.io.IOException {
 char choice, ignore;
 Help hlpobj = new Help();

 for(;;) {
 do {
 hlpobj.showMenu();

 choice = (char) System.in.read();

 do {
 ignore = (char) System.in.read();
 } while(ignore != '\n');

 } while(!hlpobj.isValid(choice));

 if(choice == 'q') break;

 System.out.println("\n");

 hlpobj.helpOn(choice);
 }
 }
}

When you try the program, you will find that it is functionally the same as before. The
advantage to this approach is that you now have a help system component that can be reused
whenever it is needed.

Constructors
In the preceding examples, the instance variables of each Vehicle object had to be set manually
using a sequence of statements, such as:

minivan.passengers = 7;
minivan.fuelcap = 16;
minivan.mpg = 21;

04-ch04.indd 124 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 125

An approach like this would never be used in professionally written Java code. Aside from
being error prone (you might forget to set one of the fields), there is simply a better way to
accomplish this task: the constructor.

A constructor initializes an object when it is created. It has the same name as its class
and is syntactically similar to a method. However, constructors have no explicit return
type. Typically, you will use a constructor to give initial values to the instance variables
defined by the class, or to perform any other startup procedures required to create a fully
formed object.

All classes have constructors, whether you define one or not, because Java automatically
provides a default constructor that initializes all member variables to their default values,
which are zero, null, and false, for numeric types, reference types, and booleans, respectively.
However, once you define your own constructor, the default constructor is no longer used.

Here is a simple example that uses a constructor:

// A simple constructor.

class MyClass {
 int x;

 MyClass() {
 x = 10;
 }
}

class ConsDemo {
 public static void main(String args[]) {
 MyClass t1 = new MyClass();
 MyClass t2 = new MyClass();

 System.out.println(t1.x + " " + t2.x);
 }
}

In this example, the constructor for MyClass is

MyClass() {
 x = 10;
}

This constructor assigns the instance variable x of MyClass the value 10. This constructor is
called by new when an object is created. For example, in the line

MyClass t1 = new MyClass();

the constructor MyClass() is called on the t1 object, giving t1.x the value 10. The same is true
for t2. After construction, t2.x has the value 10. Thus, the output from the program is

10 10

This is the constructor for MyClass.

04-ch04.indd 125 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 126 Java: A Beginner’s Guide

Parameterized Constructors
In the preceding example, a parameter-less constructor was used. Although this is fine for
some situations, most often you will need a constructor that accepts one or more parameters.
Parameters are added to a constructor in the same way that they are added to a method: just
declare them inside the parentheses after the constructor’s name. For example, here, MyClass
is given a parameterized constructor:

// A parameterized constructor.

class MyClass {
 int x;

 MyClass(int i) {
 x = i;
 }
}

class ParmConsDemo {
 public static void main(String args[]) {
 MyClass t1 = new MyClass(10);
 MyClass t2 = new MyClass(88);

 System.out.println(t1.x + " " + t2.x);
 }
}

The output from this program is shown here:

10 88

In this version of the program, the MyClass() constructor defines one parameter called i,
which is used to initialize the instance variable, x. Thus, when the line

MyClass t1 = new MyClass(10);

executes, the value 10 is passed to i, which is then assigned to x.

Adding a Constructor to the Vehicle Class
We can improve the Vehicle class by adding a constructor that automatically initializes the
passengers, fuelcap, and mpg fields when an object is constructed. Pay special attention to
how Vehicle objects are created.

// Add a constructor.

class Vehicle {
 int passengers; // number of passengers
 int fuelcap; // fuel capacity in gallons
 int mpg; // fuel consumption in miles per gallon

This constructor has a parameter.

04-ch04.indd 126 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 127

 // This is a constructor for Vehicle.
 Vehicle(int p, int f, int m) {
 passengers = p;
 fuelcap = f;
 mpg = m;
 }

 // Return the range.
 int range() {
 return mpg * fuelcap;
 }

 // Compute fuel needed for a given distance.
 double fuelneeded(int miles) {
 return (double) miles / mpg;
 }
}

class VehConsDemo {
 public static void main(String args[]) {

 // construct complete vehicles
 Vehicle minivan = new Vehicle(7, 16, 21);
 Vehicle sportscar = new Vehicle(2, 14, 12);
 double gallons;
 int dist = 252;

 gallons = minivan.fuelneeded(dist);

 System.out.println("To go " + dist + " miles minivan needs " +
 gallons + " gallons of fuel.");

 gallons = sportscar.fuelneeded(dist);

 System.out.println("To go " + dist + " miles sportscar needs " +
 gallons + " gallons of fuel.");

 }
}

Both minivan and sportscar are initialized by the Vehicle() constructor when they are
created. Each object is initialized as specified in the parameters to its constructor. For example,
in the following line,

Vehicle minivan = new Vehicle(7, 16, 21);

the values 7, 16, and 21 are passed to the Vehicle() constructor when new creates the object.
Thus, minivan’s copy of passengers, fuelcap, and mpg will contain the values 7, 16, and 21,
respectively. The output from this program is the same as the previous version.

Constructor for Vehicle.

04-ch04.indd 127 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 128 Java: A Beginner’s Guide

The new Operator Revisited
Now that you know more about classes and their constructors, let’s take a closer look at the
new operator. In the context of an assignment, the new operator has this general form:

class-var = new class-name(arg-list);

Here, class-var is a variable of the class type being created. The class-name is the name of
the class that is being instantiated. The class name followed by a parenthesized argument list
(which can be empty) specifies the constructor for the class. If a class does not define its own
constructor, new will use the default constructor supplied by Java. Thus, new can be used to
create an object of any class type. The new operator returns a reference to the newly created
object, which (in this case) is assigned to class-var.

Since memory is finite, it is possible that new will not be able to allocate memory for
an object because insufficient memory exists. If this happens, a run-time exception will
occur. (You will learn about exceptions in Chapter 9.) For the sample programs in this book,
you won’t need to worry about running out of memory, but you will need to consider this
possibility in real-world programs that you write.

Garbage Collection and Finalizers
As you have seen, objects are dynamically allocated from a pool of free memory by using the
new operator. As explained, memory is not infinite, and the free memory can be exhausted.
Thus, it is possible for new to fail because there is insufficient free memory to create the
desired object. For this reason, a key component of any dynamic allocation scheme is the
recovery of free memory from unused objects, making that memory available for subsequent
reallocation. In some programming languages, the release of previously allocated memory
is handled manually. However, Java uses a different, more trouble-free approach: garbage
collection.

Java’s garbage collection system reclaims objects automatically—occurring transparently,
behind the scenes, without any programmer intervention. It works like this: When no references
to an object exist, that object is assumed to be no longer needed, and the memory occupied by
the object is released. This recycled memory can then be used for a subsequent allocation.

Q: Why don’t I need to use new for variables of the primitive types, such as int or float?

A: Java’s primitive types are not implemented as objects. Rather, because of efficiency
concerns, they are implemented as “normal” variables. A variable of a primitive type
actually contains the value that you have given it. As explained, object variables are
references to the object. This layer of indirection (and other object features) adds overhead
to an object that is avoided by a primitive type.

Ask the Expert

04-ch04.indd 128 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 129

Garbage collection occurs only sporadically during the execution of your program. It will
not occur simply because one or more objects exist that are no longer used. For efficiency,
the garbage collector will usually run only when two conditions are met: there are objects to
recycle, and there is a need to recycle them. Remember, garbage collection takes time, so the
Java run-time system does it only when it is appropriate. Thus, you can’t know precisely when
garbage collection will take place.

The finalize() Method
It is possible to define a method that will be called just before an object’s final destruction by
the garbage collector. This method is called finalize(), and it can be used to ensure that an
object terminates cleanly. For example, you might use finalize() to make sure that an open file
owned by that object is closed.

To add a finalizer to a class, you simply define the finalize() method. The Java run-time system
calls that method whenever it is about to recycle an object of that class. Inside the finalize() method
you will specify those actions that must be performed before an object is destroyed.

The finalize() method has this general form:

protected void finalize()
{
 // finalization code here
}

Here, the keyword protected is a specifier that limits access to finalize(). This and the other
access specifiers are explained in Chapter 6.

It is important to understand that finalize() is called just before garbage collection. It is
not called when an object goes out of scope, for example. This means that you cannot know
when—or even if—finalize() will be executed. For example, if your program ends before
garbage collection occurs, finalize() will not execute. Therefore, it should be used as a “backup”
procedure to ensure the proper handling of some resource, or for special-use applications, not
as the means that your program uses in its normal operation. In short, finalize() is a specialized
method that is seldom needed by most programs.

Q: I know that C++ defines things called destructors, which are automatically executed
when an object is destroyed. Is finalize() similar to a destructor?

A: Java does not have destructors. Although it is true that the finalize() method approximates
the function of a destructor, it is not the same. For example, a C++ destructor is always
called just before an object goes out of scope, but you can’t know when finalize() will be
called for any specific object. Frankly, because of Java’s use of garbage collection, there is
little need for a destructor.

Ask the Expert

04-ch04.indd 129 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 130 Java: A Beginner’s Guide

Try This 4-2 Demonstrate Garbage Collection
and Finalization

Because garbage collection runs sporadically in the background, it is not
trivial to demonstrate it. However, one way it can be done is through the use of

the finalize() method. Recall that finalize() is called when an object is about to be recycled.
As explained, objects are not necessarily recycled as soon as they are no longer needed.
Instead, the garbage collector waits until it can perform its collection efficiently, usually when
there are many unused objects. Thus, to demonstrate garbage collection via the finalize()
method, you often need to create and destroy a large number of objects—and this is precisely
what you will do in this project.

 1. Create a new file called Finalize.java.

 2. Create the FDemo class shown here:

class FDemo {
 int x;

 FDemo(int i) {
 x = i;
 }

 // called when object is recycled
 protected void finalize() {
 System.out.println("Finalizing " + x);
 }

 // generates an object that is immediately destroyed
 void generator(int i) {
 FDemo o = new FDemo(i);
 }
}

 The constructor sets the instance variable x to a known value. In this example, x is used as
an object ID. The finalize() method displays the value of x when an object is recycled. Of
special interest is generator(). This method creates and then promptly discards an FDemo
object. You will see how this is used in the next step.

 3. Create the Finalize class, shown here:

class Finalize {
 public static void main(String args[]) {
 int count;

 FDemo ob = new FDemo(0);

Finalize.java

04-ch04.indd 130 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 131

 /* Now, generate a large number of objects. At
 some point, garbage collection will occur.
 Note: you might need to increase the number
 of objects generated in order to force
 garbage collection. */

 for(count=1; count < 100000; count++)
 ob.generator(count);
 }
}

 This class creates an initial FDemo object called ob. Then, using ob, it creates
100,000 objects by calling generator() on ob. This has the net effect of creating and
discarding 100,000 objects. At various points in the middle of this process, garbage
collection will take place. Precisely how often or when depends upon several factors, such
as the initial amount of free memory and the operating system. However, at some point,
you will start to see the messages generated by finalize(). If you don’t see the messages,
try increasing the number of objects being generated by raising the count in the for loop.

 4. Here is the entire Finalize.java program:

/*
 Try This 4-2

 Demonstrate garbage collection and the finalize() method.
*/

class FDemo {
 int x;

 FDemo(int i) {
 x = i;
 }

 // called when object is recycled
 protected void finalize() {
 System.out.println("Finalizing " + x);
 }

 // generates an object that is immediately destroyed
 void generator(int i) {
 FDemo o = new FDemo(i);
 }
}

class Finalize {
 public static void main(String args[]) {
 int count;
 (continued)

04-ch04.indd 131 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 132 Java: A Beginner’s Guide

 FDemo ob = new FDemo(0);

 /* Now, generate a large number of objects. At
 some point, garbage collection will occur.
 Note: you might need to increase the number
 of objects generated in order to force
 garbage collection. */

 for(count=1; count < 100000; count++)
 ob.generator(count);
 }
}

The this Keyword
Before concluding this chapter it is necessary to introduce this. When a method is called, it is
automatically passed an implicit argument that is a reference to the invoking object (that is, the
object on which the method is called). This reference is called this. To understand this, first
consider a program that creates a class called Pwr that computes the result of a number raised
to some integer power:

class Pwr {
 double b;
 int e;
 double val;

 Pwr(double base, int exp) {
 b = base;
 e = exp;

 val = 1;
 if(exp==0) return;
 for(; exp>0; exp--) val = val * base;
 }

 double get_pwr() {
 return val;
 }
}

class DemoPwr {
 public static void main(String args[]) {
 Pwr x = new Pwr(4.0, 2);
 Pwr y = new Pwr(2.5, 1);
 Pwr z = new Pwr(5.7, 0);

04-ch04.indd 132 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 Chapter 4: Introducing Classes, Objects, and Methods 133

 System.out.println(x.b + " raised to the " + x.e +
 " power is " + x.get_pwr());
 System.out.println(y.b + " raised to the " + y.e +
 " power is " + y.get_pwr());
 System.out.println(z.b + " raised to the " + z.e +
 " power is " + z.get_pwr());
 }
}

As you know, within a method, the other members of a class can be accessed directly,
without any object or class qualification. Thus, inside get_pwr(), the statement

return val;

means that the copy of val associated with the invoking object will be returned. However, the
same statement can also be written like this:

return this.val;

Here, this refers to the object on which get_pwr() was called. Thus, this.val refers to that
object’s copy of val. For example, if get_pwr() had been invoked on x, then this in the
preceding statement would have been referring to x. Writing the statement without using this
is really just shorthand.

Here is the entire Pwr class written using the this reference:

class Pwr {
 double b;
 int e;
 double val;

 Pwr(double base, int exp) {
 this.b = base;
 this.e = exp;

 this.val = 1;
 if(exp==0) return;
 for(; exp>0; exp--) this.val = this.val * base;
 }

 double get_pwr() {
 return this.val;
 }
}

Actually, no Java programmer would write Pwr as just shown because nothing is gained,
and the standard form is easier. However, this has some important uses. For example, the
Java syntax permits the name of a parameter or a local variable to be the same as the name of
an instance variable. When this happens, the local name hides the instance variable. You can

04-ch04.indd 133 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew-Tight / Java®: A Beginner’s Guide, Fifth Edition / Herb Schildt / 632-7 / Chapter 4

 134 Java: A Beginner’s Guide

gain access to the hidden instance variable by referring to it through this. For example, the
following is a syntactically valid way to write the Pwr() constructor.

Pwr(double b, int e) {
 this.b = b;
 this.e = e;

 val = 1;
 if(e==0) return;
 for(; e>0; e--) val = val * b;
}

In this version, the names of the parameters are the same as the names of the instance
variables, thus hiding them. However, this is used to “uncover” the instance variables.

 Chapter 4 Self Test
 1. What is the difference between a class and an object?

 2. How is a class defined?

 3. What does each object have its own copy of?

 4. Using two separate statements, show how to declare an object called counter of a class
called MyCounter.

 5. Show how a method called myMeth() is declared if it has a return type of double and has
two int parameters called a and b.

 6. How must a method return if it returns a value?

 7. What name does a constructor have?

 8. What does new do?

 9. What is garbage collection, and how does it work? What is finalize()?

 10. What is this?

 11. Can a constructor have one or more parameters?

 12. If a method returns no value, what must its return type be?

This refers to the b instance
variable, not the parameter.

✓

04-ch04.indd 134 2/21/14 1:57 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8
Blind folio: 1

CHAPTER
1

Taking Java to
the Next Level

01-ch01.indd 1 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

2 Mastering Lambdas: Java Programming in a Multicore World

Java 8 contains the biggest changes to Java since version 1.0 shipped in 1996,
combining coordinated changes to the language, the libraries, and the virtual
machine. It promises to alter the way we think about the execution of Java

programs and to make the language fit for use in a world, soon to arrive, of massively
parallel hardware. Yet for such an important innovation, the actual changes to the
language seem quite minor. What is it about these apparently minor modifications
that will make such a big difference? And why should we change a programming
model that has served us so well throughout the lifetime of Java, and indeed for much
longer before that? In this chapter we will explore some of the limitations of that
model and see how the lambda-related features of Java 8 will enable Java to evolve to
meet the challenges of a new generation of hardware architectures.

The Trouble with Iteration
Let’s start with code that simply iterates over a collection of mutable objects, calling a
single method on each of them. The following code fragment constructs a collection of
java.awt.Point objects (Point is a conveniently simple library class, consisting
only of a pair (x,y) of coordinates). Our code then iterates over the collection,
translating (i.e., moving) each Point by a distance of 1 on both the x and y axes.

List<Point> pointList = Arrays.asList(new Point(1, 2), new Point(2, 3));
for (Point p : pointList) {
 p.translate(1, 1);
}

Before Java 5 introduced the for-each loop, we would have written the loop
like this:

for (Iterator pointItr = pointList.iterator(); pointItr.hasNext();) {
 ((Point) pointItr.next()).translate(1, 1);
}

Here we are asking pointList to create an Iterator object on our behalf, and
we are then using that object to access the elements of pointList in turn. This
version is still relevant, because today this is the code that the Java compiler generates
to implement the for-each loop. Its key aspect for us is that the order of access to the
elements of pointList is controlled by the Iterator—there is nothing that we can
do to change it. The Iterator for an ArrayList, for example, will return the
elements of the list in sequential order.

Why is this problematic? After all, when the Java Collections Framework was
designed in 1998, it seemed perfectly reasonable to dictate the access order of list
elements in this way. What has changed since then?

01-ch01.indd 2 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

Chapter 1: Taking Java to the Next Level 3

The answer, of course, lies in how hardware has been evolving. Workstations and
servers have been equipped with multiple processors for a long time, but between
the design of the Java Collections Framework in 1998 and the appearance of the first
dual-core processors in personal computers in 2005, a revolution had taken place in
chip design. A 40-year trend of exponentially increasing processor speed had been
halted by inescapable physical facts: signal leakage, inadequate heat dissipation, and
the hard truth that, even at the speed of light, information cannot travel fast enough
across a chip for further processor speed increases.

But clock speed limitations notwithstanding, the density of chip components
continued to increase. So, since it wasn’t possible to offer a 6 GHz core, the chip
vendors instead began to offer dual-core processors, each core running at 3 GHz.
This trend has continued, with currently no end in sight; at the time of writing
(early 2014) quad-core processors have become mainstream, eight-core processors
are appearing in the commodity hardware market, and specialist servers have long
been available with dozens of cores per processor. The direction is clear, and any
programming model that doesn’t adapt to it will fail in the face of competition from
models that do adapt. Adaptation would mean providing developers with an
accessible way of making use of the processing power of multiple cores by
distributing tasks over them to be executed in parallel.1 Failing to adapt, on the
other hand, would mean that Java programs, bound by default to a single core,
would run at a progressively greater speed disadvantage compared to programs in
languages that had found ways to assist users in easily parallelizing their code.

The need for change is shown by the code at the start of this section, which
could only access list elements one at a time in the order dictated by the iterator.
Collection processing is not the only processor-intensive task that programs have to
carry out, but it is one of the most important. The model of iteration embodied in
Java’s loop constructs forces collection element processing into a serial straitjacket,
and that is a serious problem at a time when the most pressing requirement for
runtimes—at least as far as performance is concerned—is precisely the opposite: to
distribute processing over multiple cores.

Internal Iteration
The intrusiveness of the serial model of iteration becomes obvious when we imagine
imposing it on a real-world situation. If someone were to ask you to mail some
letters with the instruction “repeat the following action: if you have any more letters,
take the next one in alphabetical order of addressee’s surname and put it in the
mailbox,” your kindest thought would probably be that they have overspecified the

1 The distribution of a processing task over multiple processors is often called parallelization. Even if we
dislike this word, it’s a useful shorthand that will sometimes make explanations shorter and more
readable.

01-ch01.indd 3 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

4 Mastering Lambdas: Java Programming in a Multicore World

task. You would know that ordering doesn’t matter in this task, and neither does the
mode—sequential or parallel—of execution, yet it would seem you aren’t allowed
to ignore them. In this situation you might feel some sympathy with a collection
forced by external iteration to process elements serially and in a fixed order when
much better strategies may be available.

In reality, all you need to know for that real-world task is that every letter in a
bundle needs mailing; exactly how to do that should be up to you. And in the same
way, we ought to be able to tell collections what should be done to each element
they contain, rather than specifying how, as external iteration does. If we could do
that, what would the code look like? Collections would have to expose a method
accepting the “what,” namely the task to be executed on each element; an obvious
name for this method is forEach. With it, we can imagine replacing the iterative
code from the start of this section with this:2

pointList.forEach(/*translate the point by (1,1)*/);

This is called internal iteration because, although the explicit iterative code is no
longer obvious, iteration is still taking place internally to the collection itself.

The change from external to internal iteration may seem a small one, simply a
matter of moving the work of iteration across the client-library boundary. But the
consequences are not small. The parallelization work that we require can now be
defined in the collection class instead of repeatedly in every client method that must
iterate over the collection. Moreover, the implementation is free to use additional
techniques such as laziness and out-of-order execution—and, indeed, others yet to
be discovered—to get to the answer faster.

So internal iteration is a necessity for a programming model to allow collection
library writers the freedom to choose, for each collection, the best way of implementing
bulk processing. But what is to replace the comment in the call of forEach—how
can the collection’s methods be told what task is to be executed on each element?

The Command Pattern
There’s no need to go outside traditional Java mechanisms to find an answer to this
question. For example, we routinely create Runnable instances and pass them as
arguments. If you think of a Runnable as an object representing a task to be
executed when its run method is called, you can see that what we now require is
very similar. For another example, the Swing framework requires the developer to
define the different tasks that will be executed in response to different events on the

2 Our imagination will need to be quite powerful, since (as of Java 7) java.util.List has no
forEach method and, as an interface, cannot have one added. In Chapter 5 we’ll see how Java 8
overcomes this problem.

01-ch01.indd 4 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

Chapter 1: Taking Java to the Next Level 5

user interface. If you are familiar with classical design patterns [GoF], you will
recognize this loose description of the Command Pattern.

In the case we’re considering, what command is needed? Our starting point was
a call to the translate method of every Point in a List. So for this example it
appears that forEach should accept as its argument an object exposing a method
that will call translate on each element of the list. If we make this object an
instance of a more general interface, PointAction say, then we can define
different implementations of PointAction for different actions that we want to
have iteratively executed on Point collections:

public interface PointAction {
 void doForPoint(Point p);
}

Right now, the implementation we want is

class TranslateByOne implements PointAction {
 public void doForPoint(Point p) {
 p.translate(1, 1);
 }
}

Now we can sketch a naïve implementation of forEach:

public class PointArrayList extends ArrayList<Point> {
 public void forEach(PointAction t) {
 for (Point p : this) {
 t.doForPoint(p);
 }
 }
}

and if we make pointList an instance of PointArrayList, our goal of internal
iteration is achieved with this client code:

pointList.forEach(new TranslateByOne());

Of course, this toy code is absurdly specialized; we aren’t really going to write a
new interface for every element type we need to work with. Fortunately, we don’t
need to; there is nothing special about the names PointAction and doForPoint; if
we simply replace them consistently with other names, nothing changes. In the Java
8 collections library they are called Consumer and accept. So our PointAction
interface becomes:

public interface Consumer<T> {
 void accept(T t);
}

01-ch01.indd 5 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

6 Mastering Lambdas: Java Programming in a Multicore World

Parameterizing the type of the interface allows us to dispense with the specialized
ArrayList subclass and instead add the method forEach directly to the class
itself, as is done by inheritance in Java 8. This method takes a java.util.function
.Consumer, which will receive and process each element of the collection.

public class ArrayList<E> {
 ...
 public void forEach(Consumer c) {
 for (E e : this) {
 c.accept(e);
 }
 }
}

Applying these changes to the client code, we get

class TranslateByOne implements Consumer<Point> {
 public void accept(Point p) {
 p.translate(1, 1);
 }
}
...
pointList.forEach(new TranslateByOne());

You may think that this code is still pretty clumsy. But notice that the clumsiness
is now concentrated in the representation of each command by an instance of a
class. In many cases, this is overkill. In the present case, for example, all that
forEach really needs is the behavior of the single method accept of the object that
has been supplied to it. State and all the other apparatus that make up the object are
included only because method arguments in Java, if not primitives, have to be object
references. But we have always needed to specify this apparatus—until now.

Lambda Expressions
The code that concluded the previous section is not idiomatic Java for the command
pattern. When, as in this case, a class is both small and unlikely to be reused, a more
common usage is to define an anonymous inner class:

pointList.forEach(new Consumer<Point> {
 public void accept(Point p) {
 p.translate(1, 1);
 }
});

Experienced Java developers are so accustomed to seeing code like this that we
have often forgotten how we felt when we first encountered it. Common first reactions

01-ch01.indd 6 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

Chapter 1: Taking Java to the Next Level 7

to the syntax for anonymous inner classes used in this way are that it is ugly, verbose,
and difficult to understand quickly, even though all it is doing really is saying “do this
for each element.” You don’t have to agree completely with these judgements to
accept that any attempt to persuade developers to rely on this idiom for every
collection operation is unlikely to be very successful. And this, at last, is our cue for
the introduction of lambda expressions.3

To reduce the verbosity of this call, we should try to identify those places where
we are supplying information that the compiler could instead infer from the context.
One such piece of information is the name of the interface being implemented by the
anonymous inner class. It’s enough for the compiler to know that the declared type of
the parameter to forEach is Consumer<T>; that is sufficient information to allow
the supplied argument to be checked for type compatibility. Let’s de-emphasize the
code that the compiler can infer:

pointList.forEach(new Consumer<Point>() {
 public void accept(Point p) {
 p.translate(1, 1);
 }
});

Secondly, what about the name of the method being overridden—in this case,
accept? There’s no way that the compiler can infer that in general. But there is an
effective workaround: we can apply a rule that for any object to be used in the
abbreviated form that we are developing, it must implement an interface, like
Consumer, that has only a single abstract4 method (this is called a functional
interface, or sometimes a SAM interface). That gives the compiler a way to choose
the correct method without ambiguity. Again let’s de-emphasize the code that can
be inferred in this way:

pointList.forEach(new Consumer<Point>() {
 public void accept(Point p) {
 p.translate(1, 1);
 }
});

3 People are often curious about the origin of the name. The idea of lambda expressions comes from a
model of computation developed in the 1930s by the American mathematician Alonzo Church, in which
the Greek letter λ (lambda) represents functional abstraction. But why that particular letter? Church seems
to have liked to tease: asked about his choice, his usual explanation involved accidents of typesetting, but
in later years he had an alternative answer: “Eeny, meeny, miny, moe.”
4 This qualification may seem unnecessary if you believe that interfaces can contain only abstract methods.
In fact, all interfaces already contain concrete methods inherited from Object, and from Java 8 onward
may contain user-defined concrete methods also (see Chapter 5).

01-ch01.indd 7 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

8 Mastering Lambdas: Java Programming in a Multicore World

Finally, the instantiated type of Consumer can often be inferred from the context,
in this case from the fact that when the forEach method calls accept, it supplies it
with an element of pointList, previously declared as a List<Point>. That
identifies the type parameter to Consumer as Point, allowing us to omit the explicit
type declaration of the argument to accept.

This is what’s left when we de-emphasize this last component of the forEach call:

pointList.forEach(new Consumer<Point>() {
 public void accept(Point p) {
 p.translate(1, 1);
 }
});

The argument to forEach represents an object, implementing the interface
(Consumer) required by forEach, such that when accept (Consumer’s only
abstract method) is called for a pointList element p, the effect will be to call
p.translate(1, 1).

Some extra syntax (“->”) is required to separate the parameter list from the
expression body. With that addition, we finally get the simple form for a lambda
expression. Here it is, being used in internal iteration:

pointList.forEach(p -> p.translate(1, 1));

If you are unused to reading lambda expressions, you may find it helpful for the
moment to continue to think of them as an abbreviation for a method declaration,
mentally mapping the parameter list of the lambda to that of the imaginary method,
and its body (often preceded by an added return) to the method body. In the next
chapter, we will see that it is going to be necessary to vary the simple syntax in the
preceding example for lambda expressions with multiple parameters and with more
elaborate bodies, and in cases where the compiler cannot infer parameter types. But
if you have followed the reasoning that brought us to this point, you should have a
basic understanding of the motivation for the introduction of lambda expressions
and of the form that they have taken.

This section has covered a lot of ground. Let’s summarize: we began by considering
the adaptations that our programming model need to make in order to accommodate
the requirements of changing hardware architectures; this brought us to a review of
processing of collection elements, which in turn made us aware of the need to have a
concise way of defining behavior for collections to execute; finally, paring away the
excess text from anonymous inner class definitions brought us to a simple syntax for
lambda expressions. In the remaining sections of this chapter, we will look at some
of the new idioms that lambda expressions make possible. We will see that bulk
processing of collection elements can be written in a much more expressive style,
that these changes in idiom make it much easier for library writers to incorporate
parallel algorithms to take advantage of new hardware architectures, and finally that

01-ch01.indd 8 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

Chapter 1: Taking Java to the Next Level 9

emphasizing functional behavior can improve the design of APIs. It’s an impressive list
of achievements for such an innocuous-looking change!

From Collections to Streams
Let’s extend the example of the previous section a little. In real-life programs, it’s
common to process collections in a number of stages: a collection is iteratively
processed to produce a new collection, which in turn is iteratively processed, and
so on. We’ll model this in our toy example by starting with a collection of Integer
instances, then using an arbitrary transformation to produce a collection of Point
instances, and finally finding the maximum among the distances of each Point
from the origin.

List<Integer> intList = Arrays.asList(1, 2, 3, 4, 5);
List<Point> pointList = new ArrayList<>();
for (Integer i : intList) {
 pointList.add(new Point(i
}
double maxDistance = Double.MIN_VALUE;
for (Point p : pointList) {
 maxDistance = Math.max(p.distance(0, 0), maxDistance);
}

This is idiomatic Java—most developers have seen many examples of code in
this pattern—but if we look at it with fresh eyes, some unpleasant features stand out
at once. Firstly, it is very verbose, taking nine lines of code to carry out only three
operations. Secondly, the collection points, required only as intermediate storage,
is an overhead on the operation of the program; if the intermediate storage is very
large, creating it would at best add to garbage collection overheads, and at worst
would exhaust available heap space. Thirdly, there is an implicit assumption,
difficult to spot, that the minimum value of an empty list is Double.MIN_VALUE.
But the worst aspect of all is the gap between the developer’s intentions and the way
that they are expressed in code. To understand this program you have to work out
what it’s doing, then guess the developer’s intention (or, if you’re very fortunate, read
the comments), and only then check its correctness by matching the operation of the
program to the informal specification you deduced.5 All this work is slow and
error-prone—indeed, the very purpose of a high-level language is supposed to be to
minimize it by supporting code that is as close as possible to the developer’s mental
model. So how do we close the gap?

5 The situation is better than it used to be. Some of us are old enough to remember how much of this kind
of work was involved in writing big programs in assembler (really low-level languages, not far removed
from machine code). Programming languages have become much more expressive since then, but there
is still plenty of room for progress.

01-ch01.indd 9 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

10 Mastering Lambdas: Java Programming in a Multicore World

Let’s restate the problem specification:

“Apply a transformation to each one of a collection of Integer instances to
produce a Point, then find the greatest distance of any of these Points from
the origin.”

If we de-emphasize the parts of the preceding code that do not correspond to
the elements of this informal specification, we see what a poor match there is
between code and problem specification. Omitting the first line, in which the list
intList is initially created, we get:

List<Point> pointList = new ArrayList<>();
for (Integer i : intList) {
 pointList.add(new Point(i % 3, i / 3));
}
double maxDistance = Double.MIN_VALUE;
for (Point p : pointList) {
 maxDistance = Math.max(p.distance(0, 0), maxDistance);
}

This suggests a new, data-oriented way of looking at the program: we can
follow the progress of a single value from the source collection, viewing it as being
transformed first from an Integer to a Point and secondly from a Point to a
double. Both of these transformations can take place in isolation, without any
reference to the other values being processed—exactly the requirement for
parallelization. Only with the third step, finding the greatest distance, is it
necessary for the values to interact (and even then, there are techniques for
efficiently computing this in parallel).

This data-oriented view can be represented diagrammatically as in Figure 1-1.
In this figure it is clear that the rectangular boxes represent operations. The
connecting lines represent something new, a way of delivering a sequence of
values to an operation. This is different from any kind of collection, because at a
given moment the values to be delivered by a connector may not all have been
generated yet. These value sequences are called streams. Streams differ from
collections in that they provide an ordered sequence of values without providing any
storage for those values; they are just a means for expressing bulk data operations.
In the Java 8 collections API, streams are represented by interfaces—Stream for

FIGURE 1-1. Composing streams into a data pipeline

Map each i to
new

Point(i % 3, i / 3)

Calculate
max of
values

Map each p to
p. distance(0, 0)intList

Integer

(ints)

Double

(distances)

Point

(points)

01-ch01.indd 10 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

Chapter 1: Taking Java to the Next Level 11

reference values, and IntStream, LongStream, and DoubleStream for streams
of primitive values—in the package java.util.stream.

In this view, the operations represented by the boxes in Figure 1-1 are operations
on streams. The boxes in this figure represent two applications of an operation
called map; it transforms each stream element using a systematic rule. Looking at map
alone, we might think that we were dealing with operations on individual stream
elements. But we will soon meet other stream operations that can reorder, drop, or
even insert values; each of these operations can be described as taking a stream and
transforming it in some way. Each rectangular box represents an intermediate
operation, one that is not only defined on a stream but that returns a stream as its
output, as well. For example, assuming for a moment that a stream ints forms the
input to the first operation, the transformations made by the intermediate
operations of Figure 1-1 can be represented in code as:

Stream<Point> points = ints.map(i -> new Point(i % 3, i / 3));
DoubleStream distances = points.mapToDouble(p -> p.distance(0, 0));

The circle at the end of the pipeline represents the terminal operation max.
Terminal operations take a stream and, like max, return a single value (or nothing,
represented by an empty Optional, if the stream is empty):

OptionalDouble maxDistance = distances.max();

Pipelines like that in Figure 1-1 have a beginning, a middle, and an end.
We have seen the operations that defined the middle and the end; what about
the beginning? The values flowing into streams can be supplied by a variety of
sources—collections, arrays, or generating functions. In practice, a common use
case will be the transformation of a collection into a stream, as here. Java 8 collections
expose a new method stream() for this purpose, so the start of the pipeline can be
represented as:

Stream<Integer> ints = intList.stream();

and the complete code with which this section began has become:

OptionalDouble maxDistance = intList.stream()
 .map(i -> new Point(i % 3, i / 3))
 .mapToDouble(p -> p.distance(0, 0))
 .max();

This style, often called fluent because “the code flows,” is unfamiliar in the
context of collection processing and may seem initially difficult to read in this context,
but compared to the successive iterations in the code that introduced this section, it
provides a nice balance of conciseness with a close correspondence to the problem
statement: “map each integer in the source intList to a corresponding Point, map
each Point in the resulting list to its distance from the origin, then find the maximum
of the resulting values.” And, as a bonus, the performance overhead of creating and
managing intermediate collections has disappeared as well.

01-ch01.indd 11 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

12 Mastering Lambdas: Java Programming in a Multicore World

From Sequential to Parallel
This chapter began with the assertion that Java now needs to support parallel
processing of collections, and that lambdas are an essential step in providing this
support. We’ve come most of the way by seeing how lambdas make it easy for client
code developers to make use of internal iteration. The last step is to see how internal
iteration of the collection classes actually implements parallelism. It’s useful to know
the principles of how this will work, although you don’t need them for everyday
use—the complexity of the implementations is well hidden from developers of
client code.

Independent execution on multiple cores is accomplished by assigning a different
thread to each core, each thread executing a subtask of the work to be done—in this
case a subset of the collection elements to be processed. For example, given a
four-core processor and a list of eight elements (in all practical cases there will be
many more elements to be processed than cores available to process them), a program
might define a solve algorithm to break the task down for parallel execution in the
following way:

if the task list contains more than two elements {
 leftTask = task.getLeftHalf()
 rightTask = task.getRightHalf()
 doInParallel {
 leftResult = leftTask.solve()
 rightResult = rightTask.solve()
 }
 result = combine(leftResult, rightResult)
} else {
 result = task.solveSequentially()
}

The preceding pseudocode is a highly simplified description of parallel processing
using a list specialization of the pattern of recursive decomposition—recursively
splitting large tasks into smaller ones, to be executed in parallel, until the subtasks are
“small enough” to be executed in serial. Implementing recursive decomposition
requires knowing how to split tasks in this way, how to execute sufficiently small ones
without further splitting, and how to then combine the results of these smaller
executions. The technique for splitting depends on the source of the data; in this
case, splitting a list has an obvious implementation. Combining the results of subtasks
is often achieved by applying the pipeline terminal operation to them; for the example
of this chapter, it involves taking the maximum of two subtask results.

The Java concurrent utility ForkJoinPool uses this pattern, allocating threads
from its pool to new subtasks rather than creating new ones. Clearly reimplementing
this pattern is far more coding work than can realistically be expected of developers
every time a collection is to be processed. This is library work—or it certainly
should be!

In this case the library class is the collection; from Java 8 onwards the
collections library classes will be able to use ForkJoinPool in this way, so that

01-ch01.indd 12 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

Chapter 1: Taking Java to the Next Level 13

client developers can put parallelization, essentially a performance issue, to the back
of their minds and get on with solving business problems. For our current example,
the only change necessary to the client code is shown italicized:

OptionalDouble maxDistance = intList.parallelStream()
 .map(i -> new Point(i % 3, i / 3))
 .mapToDouble(p -> p.distance(0, 0))
 .max();

This illustrates what is meant by the slogan for the introduction of parallelism in
Java 8: explicit but unobtrusive. Parallel execution is achieved by breaking the initial
list of Integer values down recursively as described in the preceding example until
the sublists are small enough, then executing the entire pipeline serially, and finally
combining the results with max. Figure 1-2 shows the case of four cores and eight

FIGURE 1-2. Recursive decomposition of a list processing task

fork fork

fork

map mapmap map

map map

maxmax

max

map map

maxmax

max

max

01-ch01.indd 13 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

14 Mastering Lambdas: Java Programming in a Multicore World

elements with “small enough” taken to be two elements, but this just for the sake of
illustration; in practice the overhead of executing in parallel means that it is only
worthwhile for large data sets. We will explore this topic in more detail in Chapter 5.

Unobtrusive parallelism is an example of one of the key themes of Java 8; the API
changes that it enables give much greater freedom to library developers. One important
way in which they can use it is to explore the many opportunities for performance
improvement that are provided by modern—and future—machine architectures.

Composing Behaviors
Earlier in this chapter we saw how functionally similar lambda expressions are to
anonymous inner classes. But writing them so differently leads to different ways of
thinking about them. Lambda expressions look like functions, so it’s natural to ask
whether we can make them behave like functions. That change of perspective will
encourage us to think about working with behaviors rather than objects, and that
in turn will lead in the direction of some very different programming idioms and
library APIs.

For example, a core operation on functions is composition: combining together two
functions to make a third, whose effect is the same as applying its two components in
succession. Composition is not an idea that arises at all naturally in connection with
anonymous inner classes, but in a generalized form it corresponds very well to the
construction of traditional object-oriented programs. And just as object-oriented
programs are broken down by decomposition, the reverse of composition will work for
functions too.

Suppose, for example, that we want to sort a list of Point instances in order
of their x coordinate. The standard Java idiom for a “custom” sort6 is to create a
Comparator:

Comparator<Point> byX = new Comparator<Point>(){
 public int compare(Point p1, Point p2) {
 return Double.compare(p1.getX(), p2.getX());
 }
}

Substituting a lambda expression for the anonymous inner class declaration, as
described in the previous section, improves the readability of the code:

Comparator<Point> byX = (p1, p2) ->
 Double.compare(p1.getX(), p2.getX()); ---(1)

6 Two ways of comparing and sorting objects are standard in the Java platform: a class can have a natural
order; in this case it implements the interface Comparable and so exposes a compareTo method that
an object can use to compare itself with another. Or a Comparator can be created for the purpose, as
in this case.

01-ch01.indd 14 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

Chapter 1: Taking Java to the Next Level 15

But that doesn’t help with another very significant problem: Comparator is
monolithic. If we wanted to define a Comparator that compared on y instead of x
coordinates, we would have to copy the entire declaration, substituting getY for
getX everywhere. Good programming practice should lead us to look for a better
solution, and a moment’s reflection shows that Comparator is actually carrying out
two functions—extracting sort keys from its arguments and then comparing those
keys. We should be able to improve the code of (1) by building a Comparator
function parameterized on these two components. We’ll now evolve the code to do
that. The intermediate stages we’ll go through may seem awkward and verbose, but
persist: the conclusion will be worthwhile.

To start, let’s turn the two concrete component functions that we have into
lambda form. We know the type of the functional interface for the key extractor
function—Comparator—but we also need the type of the functional interface
corresponding to the function p -> p.getX(). Looking in the package devoted
to the declaration of functional interfaces, java.util.function, we find the
interface Function:

public interface Function<T, R> {
 public R apply(T t);
}

So we can now write the lambda expressions for both key extraction and key
comparison:

Function<Point, Double> keyExtractor = p -> p.getX();
Comparator<Double> keyComparer = (d1, d2) -> Double.compare(d1, d2);

And our version of Comparator<Point> can be reassembled from these two
smaller functions:

Comparator<Point> byX = (p1, p2) ->
 keyComparer.compare(keyExtractor.apply(p1), keyExtractor.apply(p2));
 ---(2)

This matches the form of (1) but represents an important improvement (one that
would be much more significant in a larger example): you could plug in any
keyComparer or keyExtractor that had previously been defined. After all, that
was the whole purpose of seeking to parameterize the larger function on its smaller
components.

But although recasting the Comparator in this way has improved its structure,
we have lost the conciseness of (1). We can recover that in the special but very
common case where keyComparer expresses the natural ordering on the extracted
keys. Then (2) can be rewritten as:

Comparator<Point> byX = (p1, p2) ->
 keyExtractor.apply(p1).compareTo(keyExtractor.apply(p2)); ---(3)

01-ch01.indd 15 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

16 Mastering Lambdas: Java Programming in a Multicore World

And, noticing the importance of this special case, the platform library designers
added a static method7 comparing to the interface Comparator; given a key
extractor, it creates the corresponding Comparator8 using natural ordering on the
keys. Here is its method declaration (in which generic type parameters have been
simplified for this explanation):

public static <T,U> Comparator<T> comparing(Function<T,U> keyExtractor) {
 return (c1, c2) ->
 keyExtractor.apply(c1).compareTo(keyExtractor.apply(c2));
}

Using that method allows us to write instead of (3) (assuming a static import
declaration of Comparators.comparing):

Comparator<Point> byX = comparing(p -> p.getX()); ---(4)

In comparison to (1), (4) is a big improvement: more concise and more
immediately understandable because it isolates and lays emphasis on the important
element, the key extractor, in a way that is possible only because comparing
accepts a simple behavior and uses it to build a more complex one from it.

To see the improvement in action, imagine that our problem changes slightly so
that instead of finding the single point that is furthest from the origin, we decide to
print all the points in ascending order of their distance. It is straightforward to
capture the necessary ordering:

Comparator<Point> byDistance = comparing(p -> p.distance(0, 0));

And to implement the changed problem specification, the stream pipeline needs
only a small corresponding change:

intList.stream()
 .map(i -> new Point(i % 3, i / 3))
 .sorted(comparing(p -> p.distance(0, 0)))
 .forEach(p -> System.out.printf("(%f, %f)", p.getX(), p.getY()))

The change needed to accommodate the new problem statement illustrates
some of the advantages that lambdas will bring. Changing the Comparator was
straightforward because it is being created by composition and we needed to specify
only the single component being changed. The use of the new comparator fits
smoothly with the existing stream operations, and the new code is again close to the

7 In Chapter 5 we will describe the detail of how Java 8 allows methods to be added to interfaces.
8 Other overloads of comparing can create Comparators for primitive types in the same way, but
since natural ordering can’t be used, they instead use the compare methods exposed by the wrapper
classes.

01-ch01.indd 16 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

Oracle-Regular / Mastering Lambdas - marketing piece / Naftalin / 962-8

Chapter 1: Taking Java to the Next Level 17

problem statement, with a clear correspondence between the changed part of the
problem and the changed part of the code.

It should be clear by now why the introduction of lambda expressions has been
so keenly awaited. We saw earlier the possibilities for performance improvement
that they will create by allowing library developers to leverage parallelism. Now, in
the signature of comparing, we see a sign of things to come: as client programmers
become comfortable with supplying behaviors like the key extraction function that it
accepts, fine-grained library methods like comparing will become the norm and,
with them, corresponding improvements in the style and ease of client coding.

01-ch01.indd 17 11/03/14 5:45 PM

Copyright © 2014 by McGraw-Hill Education

BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9
Blind Folio: 129

129

Chapter 9
Basic Animation

09-ch09.indd 129 1/6/14 4:21 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9

 130 Quick Start Guide to JavaFX

Key Skills & Concepts

● Using Timelines

● Creating paths

● Using KeyFrames and KeyValues

This chapter introduces you to the world of basic JavaFX animation. Whether you want to
create animated text and fly-ins or gain knowledge for creating games, basic animation

is the place to begin.
You will need to master three basic topics when tackling basic JavaFX animation:

● Timelines

● KeyFrames and KeyValues

● Paths

To begin this chapter, open NetBeans and create a new, empty JavaFX application
named Chapter9. Based on previous chapters, after you remove the Hello World code, the
contents of the Chapter9.java file should look as follows:

package Chapter9;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

/**
 *
 * @author J F DiMarzio
 */
public class Chapter9 extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }

09-ch09.indd 130 1/6/14 4:21 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9 BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9

 Chapter 9: Basic Animation 131

 @Override
 public void start(Stage primaryStage) {

 StackPane root = new StackPane();
 primaryStage.setScene(new Scene(root, 600, 480));
 primaryStage.show();
 }
}

The first section of this chapter covers Timelines.

Timelines
All animation, whether it is “traditional” hand-drawn animation or computer-based
animation, is controlled by timing. What actions occur and when, the length of time it
takes to walk from one side of a room to another, and syncing the dialogue to a character’s
mouth movements are all actions that are controlled by some sense of timing. The timing
of the animation dictates when each action begins, when it ends, and how long it lasts.

In JavaFX, animation can be moving objects around on the screen, but it can also be
something like a highlight being applied to a button on a mouse over or the expansion of
a pane in an menu.

Timing is critical to smooth animation. If there is too much time between each frame
of animation, it will look slow and jerky to the user. If there is too little time between each
frame, the animation will be too fast. This is why timing is so critical.

In JavaFX, the timing of animation is controlled by a Timeline. A Timeline takes a
set of KeyFrames and KeyValues to modify properties of your application over time. The
class that defines JavaFX Timelines is javafx.animation.Timeline.

The purpose of a Timeline is to break down frames of animation into “stops,” by time.
This means that if you tell a Timeline where you want an object to be one second from
now, and then five seconds from now, the Timeline will modify a value that you can apply
to your object. The Timeline takes on the responsibility of producing a smooth increment
of values that can be used to represent the movement of your object over the time you
specify in your keyframes. This may sound a bit confusing now, but it will make a lot
more sense when you see a Timeline in action.

A Timeline is broken down into a collection of keyframes. A keyframe is a point at
which you want one or more KeyValues to be set to defined values. The Timeline then
interpolates between the defined values automatically. For example, you are going to
make an animation of a ball moving from the top of the screen to the bottom. Therefore,
your keyframes will represent the start of your animation at the top of the screen as well
as the end of your animation at bottom of the screen, as shown in Figures 9-1 and 9-2,
respectively. The job of the Timeline is to fill in the space in between.

09-ch09.indd 131 1/6/14 4:21 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9

 132 Quick Start Guide to JavaFX

You are now going to animate a ball image used from http://jfdimarzio.com/ball.png.
You will make the ball image move down the scene, along the y-axis. To begin, you need
to create a group.

Why a group? A group is a collection of nodes. In this case you are going to need
a group to hold your ImageView and the ball image. The StackPane that you have been
using in the previous chapters allows you to stack nodes, but it doesn’t allow them to be
freely moved around the scene. To animate an image, you need to literally manipulate the
x-, y-, or z-coordinate of the image. A StackPane simply doesn’t allow that natively.

To get around this issue, you are going to create a group that can be freely moved
around the scene. You will then add the image to the group.

The following code sets up your group and image calls:

package Chapter9;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;

Figure 9-1 The first ball keyframe

09-ch09.indd 132 1/6/14 4:21 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9 BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9

 Chapter 9: Basic Animation 133

import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.stage.Stage;

/**
 *
 * @author J F DiMarzio
 */
public class Chapter9 extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 ImageView imageView = new ImageView();

Figure 9-2 The second ball keyframe

09-ch09.indd 133 1/6/14 4:21 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9

 134 Quick Start Guide to JavaFX

 Image ball = new Image("http://jfdimarzio.com/ball.png");
 imageView.setImage(ball);

 primaryStage.setHeight(480);
 primaryStage.setWidth(600);

 Group group = new Group();
 Scene scene = new Scene(group);
 group.getChildren().add(imageView);

 primaryStage.setScene(scene);
 primaryStage.show();

 }
}

If you have read Chapters 7 and 8, you will recognize most of this code. Therefore,
this is a quick overview. The first section contains the image and ImageView. Next, you
set the size of the Stage and create new Group and Scene nodes. The Group is added to the
Scene’s constructor, and the ImageView is added to the Group.

Once your image, group, and scene are created, you can begin to set up your Timeline.
To use the Timeline, you will need to add one or more KeyFrames to it. Each KeyFrame

has one or more KeyValues. The KeyValue specifies what property of the ImageView (or
any node) you want to modify, and the value you want to modify it to. In this example, you
are going to modify the y-translation property of the image to 370. When the app starts, the
image will be translated by zero pixels on the y-axis; the Timeline will use the KeyFrame
and its KeyValue to interpolate the y-translation between 0 and 370.

Now you can create a KeyFrame that takes your KeyValue and applies a specific
amount of time to it. For this example, you position the KeyFrame 2 seconds after the
Timeline starts. Finally, add the KeyFrame to the Timeline. The Timeline will do the rest
for you. Here is the code:

package Chapter9;

import javafx.animation.KeyFrame;
import javafx.animation.KeyValue;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.image.Image;

09-ch09.indd 134 1/6/14 4:21 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9 BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9

 Chapter 9: Basic Animation 135

import javafx.scene.image.ImageView;
import javafx.stage.Stage;
import javafx.util.Duration;

/**
 *
 * @author J F DiMarzio
 */
public class Chapter9 extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 ImageView imageView = new ImageView();
 Image ball = new Image("http://jfdimarzio.com/ball.png");
 imageView.setImage(ball);

 primaryStage.setHeight(480);
 primaryStage.setWidth(600);

 Group group = new Group();
 Scene scene = new Scene(group);
 group.getChildren().add(imageView);

 primaryStage.setScene(scene);
 primaryStage.show();

 Timeline timeLine = new Timeline();

 KeyValue keyValue = new KeyValue(imageView.translateYProperty(),370);
 KeyFrame frame = new KeyFrame(Duration.seconds(2),keyValue);
 timeLine.getKeyFrames().add(frame);
 timeLine.play();
 }
}

Run this app and you will see the ball image move from the top of the screen to
the bottom.

This process is good for simple motions, but what if you want to move your ball in
a more elaborate way? The next section of this chapter covers animating your images
along a path.

09-ch09.indd 135 1/6/14 4:21 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9

 136 Quick Start Guide to JavaFX

Animating Along a Path
If you want to do a lot of math—and some tricky calculations—you can create a lot of
movements with the animation style explained in the previous section. However, if you
really want to do some complex animation, such as moving an object around the screen
in a curving motion, you will want to use path animation, which is another method that
JavaFX has for creating animation that allows you to move an object around a predefined
path. In this section you learn how to create a path using knowledge you picked up in
previous chapters. You then use this path to animate the ball.

The concept here is that you can create a path using lines, arcs, and points. JavaFX
will then animate your image moving along this path.

To begin, set up your Chapter9.java file as shown here:

package Chapter9;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.stage.Stage;

/**
 *
 * @author J F DiMarzio
 */
public class Chapter9 extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 ImageView imageView = new ImageView();
 Image ball = new Image("http://jfdimarzio.com/ball.png");
 imageView.setImage(ball);

 primaryStage.setHeight(480);
 primaryStage.setWidth(600);

 Group group = new Group();

09-ch09.indd 136 1/6/14 4:21 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9 BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9

 Chapter 9: Basic Animation 137

 Scene scene = new Scene(group);
 group.getChildren().add(imageView);

 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

Similar to what you have seen before, this code grabs the same ball image you have
been working with and creates a group. In the previous section, you added a Timeline to
this code to animate the ball image travelling up and down the y-axis. For this example,
you are going to animate the ball moving around an abstract path.

The next step is to create the path you want your ball image to travel along. You will
use a Path node to create this path. The node accepts a collection of elements to create a
path from. You can easily create a group of elements that makes an abstractly shaped path.
The following piece of code defines a small element array with some basic line-based
shapes:

...
Path path = new Path();
ArcTo arc1 = new ArcTo();
ArcTo arc2 = new ArcTo();

arc1.setX(350);
arc1.setY(350);
arc1.setRadiusX(150);
arc1.setRadiusY(300);

arc2.setX(150);
arc2.setY(150);
arc2.setRadiusX(150);
arc2.setRadiusY(300);

path.getElements().addAll(new MoveTo(150f, 150f), arc1, arc2);
...

There is nothing too complex or tricky about what is happening here. You have created
a collection of elements and added them to a Path. The elements contained within the Path
are MoveTo and two instances of ArcTo. The combination of these elements creates a path
your ball can follow.

The MoveTo element does exactly what the name suggests: It moves you to a specific
point on the Cartesian grid. In this case, it moves you to x150, y150. You are specifying
this as your first element to cleanly move the starting point of your path before you start
“drawing.”

09-ch09.indd 137 1/6/14 4:21 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9

 138 Quick Start Guide to JavaFX

The next two elements draw arcs. The first ArcTo element draws an arc from the last
position of the point (in this case, x150, y150, thanks to the MoveTo element). The second
ArcTo draws another arc from the end point of the last arc.

The JavaFX animation package can now take this Path node and use it to animate your
ball using a PathTransition:

PathTransition pathTransition = PathTransitionBuilder().create();

pathTransition.duration(Duration.seconds(5))

pathTransition.node(group)
pathTransition.path(path) pathTransition.orientation(OrientationType.
ORTHOGONAL_TO_TANGENT)
pathTransition.build();

pathTransition.play();

To create your animation, you use a PathTransition class, which takes in a few familiar
parameters. Like Timeline, PathTransition can accept parameters for AutoReverse,
CycleCount, and an interpolator—if you choose to use them. However, it is the node, path,
duration, and orientation that you want to focus on for this animation.

The node is the object you want animated. In this case, the ball image from the image
group. The ball is assigned to the node in the PathTransition class. The node will be animated
along the path you created earlier. Use the setPath() method of the PathTransition to add.

Finally, the orientation parameter specifies the position of the node as it is animated along
the path. If you do not specify an orientation, the image will remain in whatever orientation
it is in when it is drawn to the screen. Setting the orientation to ORTHOGONAL_TO_
TANGENT tells JavaFX to change the orientation of the node as it moves along the path.
This change in orientation gives the animation a more organic feel.

The full path animation code should look as follows:

package Chapter9;

import javafx.animation.PathTransition;
import javafx.animation.PathTransition.OrientationType;
import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.shape.ArcTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;
import javafx.stage.Stage;
import javafx.util.Duration;

09-ch09.indd 138 1/6/14 4:21 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9 BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9

 Chapter 9: Basic Animation 139

/**
 *
 * @author J F DiMarzio
 */
public class Chapter9 extends Application {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 ImageView imageView = new ImageView();
 Image ball = new Image("http://jfdimarzio.com/ball.png");
 imageView.setImage(ball);

 primaryStage.setHeight(480);
 primaryStage.setWidth(600);

 Group group = new Group();
 Scene scene = new Scene(group);
 group.getChildren().add(imageView);

 primaryStage.setScene(scene);
 primaryStage.show();

 Path path = new Path();
 ArcTo arc1 = new ArcTo();
 ArcTo arc2 = new ArcTo();

 arc1.setX(350);
 arc1.setY(350);
 arc1.setRadiusX(150);
 arc1.setRadiusY(300);

 arc2.setX(150);
 arc2.setY(150);
 arc2.setRadiusX(150);
 arc2.setRadiusY(300);

 path.getElements().add (new MoveTo (150f, 150f));
 path.getElements().add (arc1);
 path.getElements().add (arc2);

 PathTransition pathTransition = new PathTransition();
 pathTransition.setDuration(Duration.seconds(5));
 pathTransition.setNode(group);
 pathTransition.setPath(path);
 pathTransition.setOrientation(OrientationType.ORTHOGONAL_TO_TANGENT);

09-ch09.indd 139 1/6/14 4:21 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

BeginNew / Quick Start Guide to JavaFX™ / Jerry DiMarzio / 896-5 / Chapter 9

 140 Quick Start Guide to JavaFX

Try This

 pathTransition.play();
 }
}

Compile the preceding code and run it. You will see the image of the ball animated
around an elliptical path.

Create a Path Animation
In the previous chapters, the “Try This” sections have focused on added functionality that
may not have been directly covered in the chapter. However, the skills covered in this
chapter are so important that this section will focus on enhancing these skills.

Create a new project and add an image or shape to it. Then, try creating your own path
along which you will animate the image. Experiment with paths of different sizes and
lengths. Adjust the speed of your Timelines to change the feel of the animation.

The more you are comfortable with the animation capabilities of JavaFX, the better
your applications will be.

 Chapter 9 Self Test
 1. Why is timing important to animation?

 2. What controls the timer in JavaFX animation?

 3. True or false? A Timeline contains a child collection of KeyFrames.

 4. How do you start the Timeline?

 5. True or false? A keyframe is a point at which you want one or more keyvalues to be set
to defined values.

 6. Which property of Animation sets the number of times a Timeline executes?

 7. What is the purpose of ArcTo?

 8. A path is created from a group of what?

 9. What builder class is used to create an animation from a path?

 10. Which PathTransition.OrientationType will change the orientation of the node as it
moves along the path?

✓

09-ch09.indd 140 1/6/14 4:21 PM

�������0F*UDZ�+LOO�(GXFDWLRQ

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3/
Blind folio: 1

CHAPTER
1

The History of
Java UI Toolkits

01-ch01.indd 1 3/11/14 2:44 PM

Copyright © 2014 by McGraw-Hill Education

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

2 Mastering JavaFX 8 Controls

Almost 20 years have passed since Java was first released in 1995; the eighth major version
was released in 2014. During these two decades, the IT world has rapidly evolved. The
 size, speed, and requirements of computer hardware have changed dramatically, as have

the user interfaces of software. In 1995, computers were mainly used in offices, making a
decorative user interface (UI) unimportant for most applications. Most dialogs consisted only of
labels, text fields, and buttons. More complex graphical user interface (GUI) elements such as
tables or tab panes were not supported by most of the UI toolkits. But as computing has evolved
from a specialized niche to part of everyday life for millions of people worldwide, the importance
of polished, practical, and purposeful UIs has become paramount. It is now normal to have a
computer or tablet-based device at home to manage music, photos, or other private documents,
and most people using applications today do not have technical backgrounds, which is why
applications have to be intuitive and easy to use. A good layout and modern UI controls and
effects can help generate a better user experience. By using up-to-date technologies and
frameworks, developers can create outstanding web, desktop, and mobile applications, and that’s
why UI toolkits, including the Java UI toolkits available with the Java Development Kit (JDK), have
evolved over the last 20 years.

This chapter will give you an overview of the important Java-based UI toolkits and some rising
trends. Today, most applications have their own style, and the views are laid out in a pixel-perfect
way. You’ll find out how that came to be.

Java SE UI Toolkits
Several generations of UI toolkits have been introduced in the JDK over the years to allow
developers to create state-of-the-art applications with Java. JavaFX is the newest framework to
provide the ability to create and design desktop applications with Java. Before I discuss the
controls of JavaFX in depth, it is important to take a short look at the history of Java-based UI
toolkits that are part of Java Standard Edition (Java SE). By doing so, you will get an overview of
the fundamental differences and similarities between several generations of UI toolkits,
specifically in relation to the JavaFX controls.

AWT
The first version of the Java Abstract Window Toolkit (AWT) was introduced in 1996; AWT is an
abstraction of the underlying native user interfaces. Since Java runs on various platforms, AWT
supports only the least common denominator of these platforms, so it has only a small number of
supported components. Standard controls such as buttons and text fields are available, but more
complex components such as tables are not part of the toolkit. By using AWT, developers create
GUI components in Java code. Simultaneously, a native graphical component is created as a
counterpart by the operating system, and a peer class is used as the link between these two
instances. (These kinds of components are called heavyweight components.) Developers can
define the attributes of a component, such as the visible text of a button, by using the Java class.
However, the Java application has no influence on the graphical representation of the components
because the operating system (OS) is responsible for rendering the controls.

AWT was improved with Java 1.1; it included new features such as event listeners and new
components such as the scroll pane. However, the great advantage of AWT is also its worst
weakness: By using the toolkit, each Java-based application takes on the native look and feel of
the operating system automatically. On Windows, the typical Windows buttons and combo boxes

01-ch01.indd 2 3/11/14 2:44 PM

Copyright © 2014 by McGraw-Hill Education

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 1: The History of Java UI Toolkits 3

will be shown if you create an app by using the framework, for example. On Mac OS, all
components are rendered by using the Aqua look (Apple’s default UI definition). It’s almost
impossible to create new components or modify the look of a control to deliver an application
with a unique appearance.

Java Foundation Classes and the Emergence of Swing
In parallel with Java 1.1, Netscape developed the Internet Foundation Classes (IFC) library that
represents a completely platform-independent UI toolkit for Java. Unlike AWT, IFC does not
create a wrapper around native components; it provides controls that are completely managed
and rendered by pure Java. This technology was originally designed to display applets in the
Netscape browser, and the main objective of IFC was to create browser-independent applications
that have the same appearance on any OS. In 1997, Sun Microsystems and Netscape announced
the intention to merge IFC into Java.

The Java Foundation Classes (JFC) framework is the result of integrating IFC into Java. The
classes in the framework include AWT, Java2D, Swing, and some additional APIs. JFC has been
part of Java SE since 1998, which means Swing has been part of Java SE since version 1.2 (Java 2)
and has become the main UI toolkit of Java.

Swing
Unlike the base development of IFC, which was written from scratch as a new API, Swing’s
control classes are based on AWT; however, the internal architecture of the framework is
completely different from AWT. This approach was chosen for compatibility purposes. Swing
offers a set of so-called lightweight components that are completely managed and rendered by
Java. Because of this, you can achieve the same graphical representation of components across
operation systems. From a technical point of view, the graphical output of Swing is based on
Java2D, an API for rendering two-dimensional objects that is also part of JFC. Although the
features of Java2D and Swing are not “state of the art” anymore, these were modern APIs with
many incredible options when JFC was released. Even today, you can create astonishingly good
results by using Swing.

All UI controls in Swing are based on the JComponent class, which extends the AWT
Component class. This ensures that the main concepts for using Swing components are already
known by AWT developers, and AWT layout managers, for example, can be used to lay out
Swing-based applications without any learning curve. Figure 1-1 shows a general overview of the
class hierarchy of AWT and Swing components.

By using the Java2D API, you can change the appearance of Swing-based components at any
time or even create new components from scratch. Swing uses a Model–View–Controller (MVC)
approach internally, in which the graphical representation of components is separated from the
model in a special UI class. The base skin of a Swing button is defined by the ButtonUI class, for
example. Since the operating system doesn’t draw the components in Swing, the controls will
have the same look across OSs. To achieve this, Swing includes the LookAndFeel (LAF) API. By
using LookAndFeel, you can define your own style for the complete Swing component set. In fact,
Swing comprises a set of cross-platform LAFs and system-dependent LAFs. If you want to develop
an application that always looks like the underlying operating system, you set the OS-specific
look and feel for Swing. A Java version for Mac OS includes the Aqua LAF, for example. This will
render all components so that they look like native Mac OS controls. If your application is
running on a Windows system, it can use the Windows LAF that is part of Java on every Windows-
based PC. New versions of these LAFs have native support for creating controls that you can’t

01-ch01.indd 3 3/11/14 2:44 PM

Copyright © 2014 by McGraw-Hill Education

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

4 Mastering JavaFX 8 Controls

distinguish from native ones. The framework offers some helper methods, as well. By using them,
you can configure Swing to always use the provided system look and feel depending on which
platform the application is running.

Another advantage Swing has over AWT is the rich set of components it includes. For
example, in Swing, you can find tables, lists, and tree-based controls to represent the application
data in the way that best fits your application view. These controls can handle lists of data by
using renderers to support large amounts of data and show or process them in the interface
without any problems. Above all, these new and flexible components are the reason why Swing is
used to develop business applications. With Swing’s ability to manage and render controls that
support LAFs and its internal use of Java2D, along the with many open source libraries and
frameworks that can be used to extend functionality, Swing deposed AWT and remained for
several years the standard UI toolkit for creating graphical desktop applications in Java.

From today’s point of view, Swing also has some weaknesses. One weakness is that many
graphical effects that are standard in today’s modern applications cannot be implemented by
using Swing (or they need a lot of hacks and workarounds). Examples include reflections and blur
effects. Animations are also missing from Swing’s API, and a Swing-based dialog needs a lot of
boilerplate code. Although creating special skins for controls or creating new components from
scratch is possible in Swing, it is difficult to do. It requires a lot of training, and there are many
pitfalls you can trip over before being ready to develop usable components for Swing. These are
crucial reasons why Swing needed to be replaced by a new UI toolkit. Hence, JavaFX emerged
and has been the recommended UI toolkit since Java 8.

Before diving into the history and features of JavaFX, I’ll briefly cover a few other UI toolkits
and place them in the historical context of the default Java SE toolkits.

FIGURE 1-1. Class hierarchy for AWT and Swing

[javax.swing]
JComponent

[java.lang]
Object

[java.awt]
Component

[java.awt]
Container

AWT Components

AWT Containers

Swing Components

01-ch01.indd 4 3/11/14 2:44 PM

Copyright © 2014 by McGraw-Hill Education

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 1: The History of Java UI Toolkits 5

Additional UI Toolkits
In addition to the default toolkits that are part of Java SE, some other UI-based frameworks have
been developed over the years. SWT and Apache Flex are two examples of toolkits developed
during the reign of Swing. SWT is based on Java, but Apache Flex has nothing to do with Java and
even offers some concepts that JavaFX has picked up.

SWT
Parallel to the release of Java 2 in 1998, IBM decided to implement its next generation of Java
development tools in Java. The first generation of IBM’s development environment, VisualAge for Java,
was based on Smalltalk and used the common widget (CW) framework to create the surface. This API
was a thin layer on top of the native components of the operating system and, therefore, resembled
AWT. For the developers at IBM, it was important that the new development environment, which
today is known as Eclipse, would be based on a native look and feel. Since Swing could not provide
these requirements by supporting platform-specific LAFs, the developers decided to create a separate
UI toolkit with the same features as CW. The result was the Standard Widget Toolkit (SWT).

Like AWT, SWT provides wrappers on top of native controls. The native controls are provided
via the Java Native Interface (JNI), but SWT includes an API to write your own GUI components.
Additionally, SWT provides a larger set of default controls than AWT does. All components that
are not supported by an underlying OS are emulated in Java. Tables, for example, are supported
by the Microsoft Windows platform, and SWT can depend on native components by using JNI.
On an OS that doesn’t support tables, SWT will use a fallback and manage and render a table
control completely in Java. With this functionality, developers can create an application with a
native appearance and add controls or change the skin of controls to define a unique look for the
app. Compared to Swing, SWT requires fewer system resources because most of the controls are
managed by the OS and not by Java. Today, SWT is still the default UI toolkit of Eclipse and is also
used in many projects that are based on the Eclipse rich client platform (RCP).

Apache Flex
In recent years, other languages have breathed new life into the field of UI toolkits. Apache Flex is
an example of a toolkit developed in the last few years, and it was clearly designed for creating
rich clients. It is based on Adobe Flex, which was passed to the Apache Foundation in 2012.
Internally, Flex is based on Flash for rendering and offers its own programming language called
ActionScript.

Flex offers some interesting techniques and concepts that have been sought after in Java UI
toolkits. For example, with its MXML library, Flex provides an XML-based file format to define user
interfaces and their layout. In these files, the structure of a view with all embedded controls and
their attributes can be defined. Version 4 of Flex introduced Spark as a new architecture to skin and
create controls in Flex. In Spark, all controls are split in two files: A skin file that is written in
MXML and that defines the look of the component and an ActionScript class that defines the model
and the controller. In addition, Flex provides support for effects and transformations.

The Way to JavaFX
As you can see, there are plenty of UI toolkits on the market, both based on Java and other
languages. But no toolkit is perfect. Sometimes a cool feature is incompatible to the main
architecture of a toolkit and can’t be added. Additionally, sometimes different UI toolkits have

01-ch01.indd 5 3/11/14 2:44 PM

Copyright © 2014 by McGraw-Hill Education

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

6 Mastering JavaFX 8 Controls

different philosophies. Some rely on native controls, while others have extended support for
skinning. Another feature that has become more important over the years is the way the metadata
of controls, such as the background or border and the layout of views, is described. Most modern
toolkits remove this information from the source and add file types such as MXML in Flex or the
XML layout in Android to define this information. Old Java-based UI toolkits like Swing can’t
handle these needed features.

From F3 to JavaFX 8
The JavaFX story started with the F3 API developed by Chris Oliver at SeeBeyond. The company
required a modern UI toolkit to create new desktop applications that looked superior to the
competition, so Oliver started developing the F3 framework, and it was acquired by Sun Microsystems
as part of the SeeBeyond acquisition during the API’s development. Oliver continued on at Sun to
lead the development of F3, which was renamed and introduced as JavaFX at JavaOne in 2007.
The first version of JavaFX was published one year later. However, version 1 of JavaFX (JavaFX
Script) had very little to do with the current version; it was a script-based language for the Java
platform that could interoperate with Java code.

After Oracle’s acquisition of Sun Microsystems, version 2 was announced that would be
based completely on the Java API, which would allow any Java developer to use it with any IDE.
By doing this, the barrier of entry to using JavaFX was reduced, and the competition for a great UI
toolkit was leveled. JavaFX Script was also discontinued with this release. JavaFX supports a lot of
effects, transformations, and animations, all of which will be covered in the following chapters.

What Kind of Applications Can Be Built with JavaFX?
So, what kind of applications can you build with JavaFX? As an initial answer, I would say
every kind of application. For sure, some types of applications are a better match to a
JavaFX-based technology stack than others, such as business applications that use databases
or servers as the back end. All the needed components are part of the JDK and the JavaFX
library, so you can create an application mostly the same way as you would have with Swing.

But JavaFX can do so much more. I have seen some 2D games that were created by
using JavaFX with the great performance and features of the JavaFX scene graph API or the
JavaFX canvas API. Additionally, JavaFX offers 3D support to create 3D landscapes. By
adding embedded support to Java, JavaFX allows you to create the UI and user interaction
for smart embedded devices. Using JavaFX in this way is as easy as developing a desktop
application. You can even develop a media center because the API to play media files is
part of JavaFX. As you can see, there is a lot of potential when using JavaFX as the UI toolkit
to develop applications.

In reality, most of the applications that will be developed with JavaFX will be business
applications, so this book will concentrate on the APIs and knowledge that you need to know
to develop these kind of applications. But even when developing data-centric applications,
you can use the creative power of JavaFX. By using the JavaFX effects, animations, or
multitouch input, you can create an application with an outstanding user experience.

01-ch01.indd 6 3/11/14 2:44 PM

Copyright © 2014 by McGraw-Hill Education

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

Chapter 1: The History of Java UI Toolkits 7

JavaFX Compared to HTML5
and Web-Based Technologies
Today a lot of applications that are created are web applications or rich Internet applications
(RIAs), also called plain HTML apps, that run in a browser such as Firefox or Chrome. Most of
these applications are written in HTML5, CSS, and JavaScript. Other technologies can also be
used to create RIAs: Technologies such as Adobe Flash/Flex and Silverlight can be used to create
applications that are running inside a browser with a browser plug-in.

These rich Internet applications could also be created with JavaFX. (Although you can integrate
a JavaFX application as an applet in a web page, this workflow isn’t best practice anymore as it will
create some problems; therefore, it won’t be discussed in this book.) I discussed the non-HTML
technologies earlier in the chapter, so now it’s time to take a deeper look at plain HTML RIAs and
how they compare to applications created with JavaFX.

First, it’s hard to compare HTML with JavaFX because of some big differences: HTML runs
inside a browser, and JavaFX applications are desktop applications running directly in the OS.
Additionally, HTML is only a markup language, and you can’t define application logic with
HTML. A developer needs to use a combination of HTML, JavaScript, and CSS to create an
interactive application.

Here is the default structure of an HTML-based RIA: By using HTML, you define all
components that appear on a web page and structure them. If you need application logic, you can
use JavaScript to add the logic to your application. Additionally, in most applications, CSS is used
to define special skins for the app and all components that are part of the application. This is a
technology stack that is unusual for a desktop application; however, JavaFX provides a comparable
set of technologies. Specifically, the layout of all views can be done by using FXML, which is an
XML-based markup language for defining JavaFX views. For the skinning of an application, JavaFX
supports CSS; it doesn’t use the same attributes that are used in HTML web applications, but the
CSS syntax is the same. Instead of JavaScript, you can use Java to define the logic and interaction of
a JavaFX application.

JavaFX offers all the benefits that a developer might know from HTML application development.
For example, the structure of the views isn’t created in code; the markup language FXML is used
to define the layout of all application dialogs. By doing so, the layout of an application can be
done by a designer who doesn’t need to understand Java code. Additionally, CSS is used to
define custom skins of controls. By using CSS, it is easy to change the font of all buttons that are
used in a JavaFX application, for example. There is another big benefit in JavaFX, too: The APIs
are ready for extensions. In HTML, you can’t use other tags than the defined ones, and CSS
provides some default attributes and a set of additional ones that are browser-specific. With
FXML, you can easily integrate any custom control, and you can define new CSS attributes with
a Java API. By doing so, you can easily add components to an application that are not part of the
default framework.

HTML applications do have some advantages over JavaFX ones, however. HTML is always
running in a browser, and a normal user doesn’t need to install anything to run web applications.
By contrast, JavaFX applications mostly run on the desktop, and if they are not packaged as native
applications, the user will need the Java runtime on the OS. And if a JavaFX application is running
in a browser, the user will need the applet plug-in. JavaFX 8 fixes this issue by offering a tool that
can package JavaFX applications as native ones and add the needed Java runtime to the package
automatically. By doing so, no additional software is needed on a client computer. Still, HTML

01-ch01.indd 7 3/11/14 2:44 PM

Copyright © 2014 by McGraw-Hill Education

Oracle TIGHT / Mastering JavaFX 8 Controls / Hendrik Ebbers / 377-3

8 Mastering JavaFX 8 Controls

applications are easier to administrate because most users have a browser, but often cross-browser
development is a necessity.

You could say that there is no final rule which of these two technologies should be used for
application development. Both have benefits and are stronger in some areas. But JavaFX has
learned a lot from HTML and has taken some of the best parts of it to offer a great infrastructure
and ecosystem for application developers.

Java-Based Web Frameworks
In addition to creating plain HTML web applications, developers can use Java to develop web
applications with frameworks such as JSF, Wicket, Play, or GWT. All these frameworks will create
applications with views that are rendered as HTML views in a browser. Normally the Java code is
running on a server, and HTML views are created that will be sent to the client. In all these
frameworks, Java can be used to define the application logic, and sometimes even the views can
be created in Java. In the end, all the frameworks will create HTML and JavaScript. Because of
this, it is often more complicated to create pixel-perfect applications with these frameworks.
Comparing all these frameworks to JavaFX is beyond the scope of this book.

Summary
UI-related technology has become more important in the past few years because developers are
creating more impressive UIs than ever before. JavaFX is the newest in a series of UI toolkits, and
it supports all modern UI methods and patterns. Without a doubt, JavaFX will become the most
important UI toolkit for Java applications in the next few years and will be used on various
platforms. Therefore, it is important for every Java application developer to know and understand
the core concepts of JavaFX. One of the most important parts of the framework is the controller
API, a core focus of this book.

01-ch01.indd 8 3/11/14 2:44 PM

Copyright © 2014 by McGraw-Hill Education

http://mhprofessional.com/promo/index.php?promocode=Java2014
http://www.amazon.com/Java-HTML5-Enterprise-Application-Development/dp/0071823093/ref=tmm_pap_title_0?ie=UTF8&qid=1394633814&sr=1-1
http://www.barnesandnoble.com/w/java-ee-and-html5-enterprise-application-development-geertjan-wielenga/1116215621?ean=9780071823098
https://play.google.com/store/books/details/John_Brock_Java_EE_and_HTML5_Enterprise_Applicatio?id=NpCbAgAAQBAJ
http://www.amazon.com/Mastering-Lambdas-Programming-Multicore-World/dp/0071829628/ref=la_B001JSFDLS_1_2?s=books&ie=UTF8&qid=1394634815&sr=1-2
http://www.barnesandnoble.com/w/mastering-lambdas-maurice-naftalin/1116215585?ean=9780071829625
http://www.amazon.com/Java-Complete-Reference-Herbert-Schildt/dp/0071808558/ref=tmm_pap_title_0?ie=UTF8&qid=1394634022&sr=1-1
http://www.barnesandnoble.com/w/java-the-complete-reference-9-e-herbert-schildt/1114977932?ean=9780071808552
http://www.amazon.com/Java-Beginners-Guide-Herbert-Schildt/dp/0071809252/ref=pd_bxgy_b_text_y
http://www.barnesandnoble.com/w/java-a-beginners-guide-6-e-herbert-schildt/1114977923?ean=9780071809252
http://www.amazon.com/Quick-Start-Guide-JavaFX-DiMarzio/dp/0071808965/ref=tmm_pap_title_0?ie=UTF8&qid=1394633892&sr=1-1
http://www.barnesandnoble.com/w/quick-start-guide-to-javafx-jf-dimarzio/1113863544?ean=9780071808965
https://play.google.com/store/books/details/J_F_DiMarzio_Quick_Start_Guide_to_JavaFX?id=EZCbAgAAQBAJ
http://www.amazon.com/Mastering-JavaFX-Controls-Hendrik-Ebbers/dp/0071833773/ref=sr_1_1?s=books&ie=UTF8&qid=1394634868&sr=1-1&keywords=Mastering+JavaFX+8+Controls
http://www.barnesandnoble.com/w/mastering-javafx-8-controls-hendrik-ebbers/1118718198?ean=9780071833776
http://www.amazon.com/Enterprise-Architect-1Z0-807-1Z0-865-1Z0-866/dp/0071826785/ref=sr_1_1?s=books&ie=UTF8&qid=1394634984&sr=1-1&keywords=0071826785
http://www.barnesandnoble.com/w/ocm-java-ee-6-enterprise-architect-exam-guide-paul-allen/1117666847?ean=9780071826785&itm=1&usri=0071826785
http://www.amazon.com/Java-EE-Applications-Oracle-Cloud/dp/0071817158/ref=sr_1_1?s=books&ie=UTF8&qid=1394635090&sr=1-1&keywords=0071817158
http://www.barnesandnoble.com/w/java-ee-applications-on-the-oracle-java-cloud-harshad-oak/1114977926?ean=9780071817158&itm=1&usri=0071817158
http://www.amazon.com/Hudson-Continuous-Integration-Practice-Burns/dp/0071804285/ref=tmm_pap_title_0?ie=UTF8&qid=1394633719&sr=1-1
http://www.barnesandnoble.com/w/hudson-continuous-integration-in-practice-ed-burns/1113863539?ean=9780071804288
https://play.google.com/store/books/details/Ed_Burns_Hudson_Continuous_Integration_in_Practice?id=zFqrTa6P78AC
http://www.amazon.com/Java-EE-7-Big-Picture/dp/0071837345/ref=sr_1_1?s=books&ie=UTF8&qid=1394635317&sr=1-1&keywords=0071837345
http://www.barnesandnoble.com/w/java-ee-7-danny-coward/1117931160?ean=9780071837347&itm=1&usri=0071837345
http://www.barnesandnoble.com/w/java-websocket-programming-danny-coward/1114977925?ean=9780071827195
http://www.amazon.com/Iron-Clad-Java-Building-Secure-Applications/dp/0071835881/ref=sr_1_1?s=books&ie=UTF8&qid=1395350420&sr=1-1

	00FrontCover
	01Preview
	02Introintro
	02Introintro
	02JDK8_IntroArticle_Schildt2
	02Intro1
	02JDK8_IntroArticle_Schildt
	JDK 8 Will Change the Way You Program
	The Stream API
	Default Methods
	Of Course, There is More

	01JavaComplete
	001a-Schildt_JavaTCR_Ch06-full
	001b-0015fix-SchildtCh15
	0015disclaimertop

	02schildt0071809252
	002-Schildt_JavaABG_Ch04-full
	03naftalin0071829628
	003-Naftalin_Lambda_Ch01-full
	04Dimarzio
	004-DiMarzio_JavaFX_Ch09-full
	05ebbers9780071833776
	005-Ebbers_JavaFXControls_Ch01-full
	05MC1232 - JavaSampler End321

